

ENVIRONMENTAL - REMEDIATION - GEOTECHNICAL ENGINEERING - WORK HEALTH & SAFETY - LABORATORIES - DRILLING

DETAILED SITE INVESTIGATION

167 Hume Highway, Greenacre NSW

Prepared for

Iris Capital Pty Ltd

9th September 2021

CONTROLLED DOCUMENT DISTRIBUTION AND REVISION REGISTER

DISTRIBUTION LIST

Copy No.	Custodian	Location	
1	Nick Kariotoglou	Aargus Pty Ltd (Library)	
2	Warren Duarte	Iris Capital Pty Ltd	

Note: This distribution list identifies the current custodians of controlled copies of the subject document. It is expected that these custodians would be responsible for:

- the storage of the document
- ensuring prompt incorporation of amendments
- making the document available to pertinent personnel within the organization
- encouraging observance of the document by such personnel
- making the document available for audit

DOCUMENT HISTORY

Document No.	Revision No.	Issue Date	Description
ES8338	0	09.09.2021	Initial Issue

Approved for release by:

Mark Kelly/

Environmental Manager

Mark Ketty

Date: 9th September 2021

TABLE OF CONTENTS

TA	ABLE	C OF CONTENTS	3
Ll	ST O	F TABLES	6
LI	íST O	F FIGURES	7
LI	IST O	OF APPENDICES	8
Αl	BBRF	EVIATIONS	9
		JTIVE SUMMARY	
1		NTRODUCTION	
1			
	1.1	BACKGROUND OBJECTIVE	
	1.2	SCOPE OF WORKS	
2		STEE IDENTIFICATION AND DESCRIPTION	
4			
	2.1	SITE IDENTIFICATION	
	2.2	SITE INSPECTION	
	2.3	TOPOGRAPHY AND SURFACE WATER DRAINAGE	
	2.4	SURROUNDING LAND USES	
3	S	ITE HISTORY	
	3.1	LAND TITLES	
	3.2	AERIAL PHOTOGRAPHS	
	3.3	EPA RECORDS	
		3.1 CLM Act 1997	
		3.2 POEO Register PLANNING 10.7 CERTIFICATES	
	3.5	INDUSTRIAL PROCESSES AND PRODUCTS MANUFACTURED	
	3.6	FORMER CHEMICAL STORAGE AND TRANSFER AREAS	
	3.7	PRODUCT SPILL & LOSS HISTORY	
	3.8	DISCHARGES TO LAND, WATER AND AIR	
	3.9	COMPLAINT HISTORY	
	3.10	DISCUSSION AND SUMMARY OF SITE HISTORY	22
4	E	ENVIRONMENTAL SETTING	23
	4.1	SENSITIVE ENVIRONMENTAL RECEPTORS	
	4.2	GEOLOGY	
	4.3	ACID SULFATE SOILS	
	4.4	HYDROGEOLOGY	
	4.5	SUMMARY OF LOCAL METEOROLOGY	
5	A	AREAS OF POTENTIAL ENVIRONMENTAL CONCERN	25
6		OATA QUALITY OBJECTIVES	
Ū		STEP 1 – STATE THE PROBLEM	
	6.1	STEP 1 – STATE THE PROBLEM	
		1.1 Fronem statement	
		1.3 Project Team	27
	<i>6</i>	1.4 Preliminary Conceptual Site Model	
	0.2	STEE 2 - IDENTIET THE DECISIONS OF THE STUDY	40

	6.3	STEP 3 - IDENTIFY INFORMATION INPUTS	29
	6.4		
	6.5		
	6.6		
	6.7	STEP 7 - OPTIMISE THE DESIGN FOR OBTAINING DATA	33
7	Ι	DATA QUALITY INDICATORS	34
	7.1	GENERAL	34
	7.2	COMPLETENESS	34
	7.3	COMPARABILITY	35
	7.4	REPRESENTATIVENESS	36
	7.5	PRECISION	36
	7.6	5 ACCURACY	37
8	S	SITE INVESTIGATION AND SCREENING LEVELS	38
	8.1	GENERAL	38
	8.2	SOILS INVESTIGATION AND SCREENING LEVELS	38
	8.	8.2.1 Health Investigation Levels (HILs)	
		8.2.2 Health Screening Levels (HSLs)	
		8.2.3 Ecological Investigation Levels (EILs)	
		8.2.5 Petroleum Hydrocarbon Management Limits	
	8.	8.2.6 Asbestos	41
		GROUNDWATER INVESTIGATION AND SCREENING LEVELS	
		8.3.1 Potential Beneficial Uses	
		8.3.2 Protection of Aquatic Ecosystems	
		8.3.4 Groundwater Health Screenings Levels for Vapour Intrusion	
	8.4	EXPORT OF WASTE	45
9	S	SOIL INVESTIGATION	46
	9.1	GENERAL METHODOLOGY	46
	9.2	SAMPLING DESIGN RATIONALE	46
	9.3	SAMPLING DENSITY AND SAMPLING DEPTH	47
	9.4	SAMPLING METHODOLOGY	47
	9.5	FIELD TESTS	48
	9.6	SOIL LABORATORY ANALYSIS	48
10	(GROUNDWATER INVESTIGATION	49
	10.1	1 GENERAL METHODOLOGY	49
	10.2	2 SAMPLING DESIGN RATIONALE	49
	10.3	3 WELL INSTALLATION	50
	10.4	4 GROUNDWATER GAUGING	51
	10.5	.5 GROUNDWATER PURGING AND SAMPLING	51
	10.6	6 LABORATORY ANALYSES	51
11	. (QUALITY ASSURANCE / QUALITY CONTROL	52
	11.1	1 FIELD QA/QC	52
		11.1.1 General	
		11.1.2 Field Duplicates	
		11.1.3 Rinsates	
		11.1.5 Sample Handling, Storage and Transport	

11.1.6	Decontamination Procedures	54
11.1.7	Calibration of Equipment	55
11.2 LA	BORATORY QA/QC	55
11.2.1	Laboratories Used	
11.2.2	Holding Times	
11.2.3	Test Methods and Practical Quantitation Limits	
•	/QC DATA EVALUATION	
12 FIEL	D OBSERVATIONS	58
12.1 GE	OLOGY	58
12.2 FIE	LD HEADSPACE RESULTS	59
12.3 GR	OUNDWATER OBSERVATIONS DURING DRILLING	59
12.4 GR	OUNDWATER MONITORING RESULTS	59
12.4.1	Groundwater Measurements	59
12.4.2	Physio-Chemical Parameters	60
13 LABO	ORATORY RESULTS	61
13.1 GE	NERAL	61
13.2 SOI	IL RESULTS	61
13.2.1	Heavy Metals	61
13.2.2	TRH, BTEX, NAPHTHALENE &/OR BENZO(a)PYRENE	62
13.2.3	PAH, OCP & PCB	
13.2.4	Asbestos	
	OUNDWATER RESULTS	
13.3.1 13.3.2	Heavy MetalsTRH, BTEX & PAH	
13.3.3	PAH	
	USSION OF RESULTS	
	IL QUALITY	
14.2 GR	OUNDWATER QUALITY	65
15 CON	CLUSION AND RECOMMENDATIONS	66
LIMITATIO	ONS	67
REFERENC	TES	60

LIST OF TABLES

Table 1: Site Identification	14
Table 2: Surrounding Land Uses	16
Table 3: Land Title Information	17
Table 4: Summary of Historical Aerial Photos	18
Table 5: Summary of Potential Areas and Contaminants of Concern	25
Table 6: Project Team and Responsibilities	27
Table 7: Conceptual Site Model	27
Table 8: Acceptable Limits for QC Samples	30
Table 9: Data Completeness	34
Table 10: QA/QC Requirements	35
Table 11: Data Comparability	35
Table 12: Data Representativeness	36
Table 13: Data Precision	37
Table 14: Data Accuracy	37
Table 15 Health screening levels for asbestos contamination in soil	41
Table 16: Potential Beneficial Uses of Groundwater	42
Table 17: Aquatic Ecosystem Values	43
Table 18: Groundwater Network	49
Table 19: Summary of Well Construction Details	50
Table 20: Groundwater Quality Stabilisation Criteria	51
Table 21: QA/QC Sampling Frequency	52
Table 22: Soil Field Duplicate Samples	52
Table 23: Groundwater Field Duplicate Samples	52
Table 24: Rinsate Samples	53
Table 25: Trip Blank/Trip Spikes	53
Table 26: Summary of Geological Observations	58
Table 27: Groundwater Elevations and Observations	59

Property: 167 Hume Highway, Greenacre NSW

Page 7 of 69

LIST OF FIGURES

Figure 1: Site Locality

Figure 2: Site Lot and DP Numbers

Figure 3: Site Features

Figure 4: Borehole Locations on 2021 Aerial

Figure 5: Borehole Locations on 1943 Aerial

Figure 6: Inferred Groundwater Flow Direction

LIST OF APPENDICES

APPENDIX A: SITE PLANS

APPENDIX B: PROPOSED DEVELOPMENT PLANS & SITE SURVEY PLANS

APPENDIX C: SITE PHOTOGRAPHS

APPENDIX D: LAND TITLE INFORMATION

APPENDIX E: CURRENT AND HISTORICAL AERIAL PHOTOGRAPHS

APPENDIX F: NSW EPA RECORDS

APPENDIX G: SECTION 149 CERTIFICATES

APPENDIX H: GROUNDWATER BORE SEARCH

APPENDIX I: LOCAL METEOROLOGY

APPENDIX J: REGULATORY CRITERIA

APPENDIX K: GROUNDWATER LOGS

APPENDIX L: FIELD RECORD FORMS / CALIBRATION CERTIFICATES

APPENDIXM: LABORATORY TECHNICAL INFORMATION

APPENDIX N: LABORATORY CERTIFICATES

APPENDIX O: SUMMARY OF RESULTS

APPENDIX P: IMPORTANT INFORMATION ABOUT YOUR REPORT

Property: 167 Hume Highway, Greenacre NSW

Page 9 of 69

ABBREVIATIONS

ADWG Australian Drinking Water Guidelines

ANZECC Australian and New Zealand Environment and Conservation Council

AST Aboveground Storage Tank

BGL Below Ground Level

BTEX Benzene, Toluene, Ethyl benzene and Xylene

COC Contaminants of Concern

DLWC Department of Land & Water Conservation

DNR Department of Natural Resources

DQOs Data Quality Objectives

POEO Protection of the Environment Operations

DSI Detailed Site Investigation

EPA Environment Protection Authority
ESA Environmental Site Assessment
HIL Health-Based Soil Investigation Level

LGA Local Government Area

NEHF National Environmental Health Forum
NEPC National Environmental Protection Council
NEPM National Environmental Protection Measure
NHMRC National Health and Medical Research Council

OCP Organochlorine Pesticides
OPP Organophosphate Pesticides

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl
PID Photo Ionisation Detector
PQL Practical Quantitation Limit
PSH Phase Separated Hydrocarbon
PSI Preliminary Site Investigation

QA/QC Quality Assurance / Quality Control RAC Remediation Acceptance Criteria

RAP Site Remediation Plan

RPD Relative Percentage Difference

SAC Site Assessment Criteria

SCID Stored Chemical Information Database SEPP State Environment Planning Policy

SMP Site Management Plan SVC Site Validation Criteria

TCLP Toxicity Characteristics Leaching Procedure

TPH Total Petroleum Hydrocarbons
TRH Total Recoverable Hydrocarbons

UCL Upper Confidence LimitUST Underground Storage TankVOC Volatile Organic CompoundsVHC Volatile Halogenated Compounds

EXECUTIVE SUMMARY

Aargus Pty Ltd ('Aargus') was appointed by Iris Capital Pty Ltd (the 'client') to undertake a Detailed Site Investigation ('DSI') within the property located at 167 Hume Highway, Greenacre NSW (the 'site'). It is understood that the site is proposed for the demolition of existing buildings and redevelopment into four buildings for commercial / retail / residential uses including basement car parking and communal open spaces.

At the time of the inspection (31st August 2021), the site was used for commercial purposes and occupied by occupied by a tavern, Chinese restaurant, a warehouse and a motel. The majority of the site is occupied by a sealed bitumen car park.

Land title information provided suggested that the site was originally owned by private individuals until 1986, when the site was then owned by various companies until 2014, when the current owner, Palms (Chullora) Pty Limited purchased the site. Aerial photography indicated that the site land use of the site appeared to have been residential from at least 1943 to 1970 and subsequently re-developed for commercial land use between 1970 and 1991, comprising the features (four buildings and bitumen car park) noted on site at present.

A search of the EPA database revealed that the subject site is not listed. The land is not identified in the Loose-Fill Asbestos Insulation Register as containing loose-fill ceiling insulation. The land is not affected by one of the matters prescribed by Section 59 (2) of the *Contaminated Land Management Act 1997*.

The findings of the assessment indicated the following areas of potential environmental concern, in relation to imported fill of unknown origin, potential pesticide use, leaks of motor vehicles, metal degradation and potential presence of hazardous materials in current or past building structures, which may pose risks to human and environmental receptors.

The soil assessment revealed the following:

• Heavy metals concentrations were below the HIL 'B' and site derived EILs.

9th September 2021

Detailed Site Investigation, Ref: ES8338

Property: 167 Hume Highway, Greenacre NSW Page 11 of 69

 TPH / BTEXN concentrations were below the HSL 'A&B', ESLs and Management Limits.

• PAH, OCP & PCB concentrations were below the HIL 'B', EILs and ESLs.

Asbestos was not detected in any of the samples analysed.

The groundwater assessment revealed the following:

 Heavy metals concentrations analysed in groundwater (with the exception of arsenic, cadmium, chromium, copper and/or nickel) appeared to fluctuate between meeting or exceeding their respective assessment criteria at various monitoring locations across the site. It was considered that the heavy metals present within the bedrock aquifer were likely to be background concentrations given that no other potential sources of

contamination were identified within the immediate vicinity of the site.

• TRH and BTEX concentrations were below the site assessment criteria.

• PAH concentrations were below the site assessment criteria.

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil and groundwater contamination at the site is negligible within the context of the proposed use of the site for four buildings for commercial / retail / residential uses including basement car parking and communal open spaces development.

The site is therefore considered to be suitable for the proposed use.

Any soils requiring removal from the site, as part of future site works, in particular to those beneath the existing site features, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

1 INTRODUCTION

1.1 Background

Aargus Pty Ltd ('Aargus') was appointed by Iris Capital Pty Ltd (the 'client') to undertake a Detailed Site Investigation ('DSI') within the property located at 167 Hume Highway, Greenacre NSW (the 'site'). The location of the property is presented in Figure 1 of Appendix A.

It is understood that the site is proposed for the demolition of existing buildings and redevelopment into four buildings for commercial / retail / residential uses including basement car parking and communal open spaces. The concept plans can be found in Appendix B.

As part of the planning process (Direction 2.6 – Remediation of Contaminated Land), it is a requirement that a site investigation report be prepared by a consultant to assess whether the site is suitable for the proposed development.

1.2 Objective

The primary objectives of this DSI are as follows:

- Identify potential areas where contamination may have occurred from current and historical activities;
- Identify potential contaminants associated with potentially contaminating activities;
- Assess the potential for soils and groundwater to have been impacted by current and historical activities; and
- Assess the suitability of the site for redevelopment into four buildings for commercial / retail / residential uses including basement car parking and communal open spaces based on its current condition and the findings of this investigation.

1.3 Scope of Works

The scope of works for this DSI includes:

- Review of the physical site setting and site conditions based on a site inspection, including research of the location of sewers, drains, holding tanks and pits, spills, patches of discoloured vegetation, etc. (where applicable);
- Research and review of the information available, including previous environmental investigations, current and historical titles information, review of aerial photographs, groundwater bore searches, EPA notices, anecdotal evidence, site survey and site records on waste management practices;
- Development of a preliminary Conceptual Site Model (CSM) to demonstrate the interactions between potential sources of contamination, exposure pathways and human/ecological receptors identified;
- A targeted soil boring/sampling investigative study formulating and conducting a sampling plan and borehole investigation;
- Groundwater monitoring well installation and groundwater sampling;
- Laboratory analysis and results from sample analysis findings and comparison to regulatory guidelines;
- Field and laboratory Quality Assurance/Quality Control (QA/QC); and
- Recommendations for additional investigations should any data gaps be identified or
 possible strategies for the management of the site, where relevant.

This report was prepared with reference to the NSW Environment Protection Authority (EPA) "Guidelines for Consultants Reporting on Contaminated Sites" (2020).

2 SITE IDENTIFICATION AND DESCRIPTION

2.1 Site Identification

Site identification information and land use is summarised in the table below.

Table 1: Site Identification

Lot and DP Number (Address)	Lot 402 in DP631754 (167 Hume Highway, Greenacre NSW)		
Coordinates (NW corner) *	Latitude: -33.896049, Longitude: 151.051316		
Coordinates (NE corner) *	Latitude: -33.89646, Longitude: 151.051745		
Coordinates (E corner) *	Latitude: -33.896899, Longitude: 151.051654		
Coordinates (SE corner) *	Latitude: -33.897375, Longitude: 151.051115		
Coordinates (SW corner) *	Latitude: -33.897092, Longitude: 151.049897		
Approx. Site Area (by Survey)	1.175 hectares		
Local Government Area	Canterbury-Bankstown		
Parish	Bankstown		
County	Cumberland		
Current Land Zoning**	B6 – Enterprise Corridor		
Proposed Land Use	Retail and Medium Density Residential		
Current Site Owner	Palms (Chullora) Pty Ltd		
Site End Users	Residents (adults & children), visitors, workers		

Notes: * refer to http://maps.six.nsw.gov.au/

The site boundary and Lot and DP numbers are presented in Figure 2 of Appendix A. A survey plan provided by the client is included in Appendix B.

 $^{**} refer to \ \underline{https://www.planningportal.nsw.gov.au/spatialviewer/\#/find-a-property/address}$

2.2 Site Inspection

A site visit was carried out on Tuesday 31st August 2021 by an Aargus field engineer to inspect the site for any potential sources of contamination and document any observations made regarding the current site conditions. At the time of the site inspection, the following observations were made:

- The site was irregular in shape and is occupied by a tavern, Chinese restaurant, a warehouse and a motel.
- The majority of the site is occupied by a sealed bitumen car park.
- The tavern is a one and two-storey brick and concrete building with a metal roof and minor landscaping.
- The restaurant is a single-storey brick building with a metal roof and minor landscaping.
- The motel is a two-storey brick building with a metal roof and minor landscaping.
- The warehouse is a single-storey brick and concrete building with a metal roof. The warehouse was utilised an auto repair shop.
- A metal shipping container was observed adjacent to the warehouse.
- The main access to the site was along the Hume Highway along the western boundary.
- There were some open grass covered areas which were observed to be in a healthy condition with no signs of dehydration.
- No surface standing water was noticed at the site.
- No ASTs, USTs and/or chemical storage areas were noted.

The site features are presented in Figure 3 of Appendix A. Site photographs are included in Appendix C.

2.3 Topography and Surface Water Drainage

The following observations were made during the site inspection carried out on Tuesday 31st August 2021:

- The site topography slopes from the Hume Highway in the west towards the south east of the site.
- Stormwater runoff from the site is expected to flow in a south easterly direction.

Copies of the topographical survey provided by the client can be found in Appendix B.

2.4 Surrounding Land Uses

The surrounding land uses identified are described in the table below:

Table 2: Surrounding Land Uses

Orientation	Description
North	Retail and residential
East	Peter Reserve and residential
South	Residential
West	Hume Highway then commercial

3 SITE HISTORY

3.1 Land Titles

A review of historical documents held at the NSW Department of Lands offices was undertaken to identify the current and previous land owners, and potential land uses. The results of the title search are summarised in the following table.

Table 3: Land Title Information

Year	Lot 402 in DP631754 (167 Hume Highway, Greenacre NSW)		
2014-2021	Palms (Chullora) Pty Limited		
2005-2014	Coles Group Property Developments Ltd		
2005	Theo's Liquor Pty Ltd		
2003-2005	Pallas Newco Pty Ltd (old name for Theo's)		
2000-2003	Karlaun Pty Ltd		
1986-2000	Premium Wine Company Pty Ltd		
	Prior Title(s): Vol 15061 Fol 54		
1983-1986	Cecilia Ellen Wall		
	Prior Titles: Vol 4085 Fol 8 / Prior Titles: Vol 5272 Fol 160 / Prior Titles: Vol 5580 Fol 4 / Prior Titles: Vol 5704 Fol 101 / Prior Titles: Vol 5709 Fol 13 / Prior Titles: Vol 6210 Fol 214 / Prior Titles: Vol 8410 Fol 118 / Prior Titles: Vol 9944 Fol 43		
1964-1982	John William Wall		
1946-1964	William Veil		
1928-1946	Henry Smith and Arthur John Smith		
1927-1928	Mildred Amelia Smith		

In summary, the land title information provided suggested that the site was originally owned by private individuals until 1986, when the site was then owned by various companies until 2014, when the current owner, Palms (Chullora) Pty Limited purchased the site.

A copy of the land titles information obtained by Aargus can be found in Appendix D.

3.2 Aerial Photographs

Selected aerial photographs obtained from the NSW Department of Lands were reviewed to describe the site features and surrounding areas at various timelines. A summary of the review is presented in the table below.

Table 4: Summary of Historical Aerial Photos

Year	Site	Surrounding areas		
1943	The site comprised a number of structures	N: Residential		
	that appeared residential in nature along the	S: Residential and vacant lands		
	western boundary. The remainder of the site	E: Residential and vacant lands		
	was open and grassed covered.	W: Road then a large parcel of occupied land		
1955	Additional residential dwellings and	N: Residential and commercial		
	associated structures were observed.	S: Residential and vacant lands		
		E: Residential and vacant lands		
		W: Road then a building and associated car parking		
1970	The majority of the previous structures have	N: New commercial buildings		
	all been removed from the site with the	S: New low density residential		
	exception of one building in the north	E: New low density residential		
	western portion of the site. The remainder of	W: Road then more car parking		
	the site appeared to be stripped of the grass			
	and trees.			
1975	A large building is located in the southern	No apparent changes were observed from the		
	and central eastern portion of the site, whilst	previous photo.		
	another building is located in the south			
	western portion. The remainder of the site			
	was vacant.			
1991	Two new buildings are observed further to	No apparent changes were observed from the		
	those noted in the 1975 photo, those being	previous photo, with the exception of:		
	along the south eastern boundary and the	N: New commercial building.		
	north eastern corner. The remainder of the			
	site was sealed with bitumen.			
1994	The site layout appeared to be similar to that	No apparent changes were observed from the		
	observed in the 1991 photo.	previous photo, with the exception of:		
		W: Road then new commercial building.		
1998	The site layout appeared to be similar to that	No apparent changes were observed from the		
	observed in the 1994 photo.	previous photo, with the exception of:		

Year	Site	Surrounding areas		
		E: New residential in the southern portion.		
2005	The site layout appeared to be similar to that observed in the 1998 photo.	No apparent changes were observed from the previous photo.		
2021	The site layout appeared to be similar to that observed in the 2005 photo.	No apparent changes were observed from the previous photo, with the exception of: W: Road then new commercial building.		

In summary, land use of the site appeared to have been residential from at least 1943 to 1970 and subsequently re-developed for commercial land use between 1970 and 1991, comprising the features (four buildings and bitumen car park) noted on site at present.

The general land use to the north was initially residential and then redeveloped into a commercial property from the mid 1950s onwards, whilst the land to the west, adjacent to the road, were occupied by various commercial / industrial buildings. The lands to the south and east have predominantly been occupied by residential properties.

Copies of current and historical aerial photographs are presented in Appendix E.

3.3 EPA Records

3.3.1 CLM Act 1997

The NSW EPA publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act. However, it should be noted that the EPA record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

A search of the EPA database revealed that the subject site is not listed.

There are fifteen (15) properties listed within the Canterbury-Bankstown Local Government Area, which are all greater than 1km from the site, therefore were not considered to pose an adverse impact on the site.

Copies of the EPA records are included in Appendix F.

3.3.2 POEO Register

A search of the POEO Register revealed that the site was not listed. A copy of the POEO register search is included in Appendix F.

3.4 Planning 10.7 Certificates

The Planning 10.7 Certificate – Section 149 (2) of the Environmental Planning & Assessment Act 1979 for the site was obtained by the client and provided to Aargus for review. A summary of the information pertaining to the site is provided below:

- The site is zoned B6 Enterprise Corridor under the provision of the *Bankstown Local Environmental Plan 2015*.
- Complying Developments under the General Development Code, Subdivision Code,
 Demolition Code, Fire Safety Code, and Commercial and Industrial (New Buildings and Additions) Code may be carried out.
- Complying Developments under the General Housing Code, Rural Housing Code, Housing Alteration Code, and General Commercial and Industrial Code may not be carried out.
- The land does not include or comprise critical habitat, conservation areas, or environmental heritage items.
- The property is not affected by a road widening or road realignment under the Roads Act.
- The land is not affected by the operation of Section 38 or 39 of the *Coastal Protection Act 1979*.
- The land is not within a proclaimed mine subsidence district.

• The land is not affected by a policy that restricts the development of the land because of bush fire or flooding.

• The land is not identified in the Loose-Fill Asbestos Insulation Register as containing loose-fill ceiling insulation.

• The land is not affected by one of the matters prescribed by Section 59 (2) of the *Contaminated Land Management Act 1997*.

Copies of the certificates are included in Appendix G.

3.5 Industrial Processes and Products Manufactured

A review of the industrial processes and/or products manufactured at the site was conducted, with no such activities noted to have occurred.

3.6 Former Chemical Storage and Transfer Areas

A review of the former chemical storage and transfer areas and/or products manufactured at the site was conducted, with no such activities noted to have occurred.

3.7 Product Spill & Loss History

It was indicated by the client, that to their knowledge no serious land or water contamination had occurred.

The majority of the site is currently either occupied by a building and/ or sealed surfaces. At the time of the inspections, the sealed surfaces were in generally good condition with only minor cracks observed. In addition, there were no visible signs of oil and/or chemical staining, indicating that any surface spills (if they did occur at all) were cleaned up immediately and did not appear to penetrate the existing slab.

3.8 Discharges to Land, Water and Air

No discharge to the land, water and air were observed.

3.9 Complaint History

No complaints were found on internet searches or from discussions with the client.

3.10 Discussion and Summary of Site History

Based on available information, the site historical usage is summarised as follows:

- Land title information provided suggested that the site was originally owned by private individuals until 1986, when the site was then owned by various companies until 2014, when the current owner, Palms (Chullora) Pty Limited purchased the site.
- Aerial photography indicated that the site land use of the site appeared to have been residential from at least 1943 to 1970 and subsequently re-developed for commercial land use between 1970 and 1991, comprising the features (four buildings and bitumen car park) noted on site at present.
- The general land use to the north was initially residential and then redeveloped into a
 commercial property from the mid 1950s onwards, whilst the land to the west,
 adjacent to the road, were occupied by various commercial / industrial buildings. The
 lands to the south and east have predominantly been occupied by residential
 properties.
- A search of the EPA database revealed that the subject site is not listed.
- The land is not identified in the Loose-Fill Asbestos Insulation Register as containing loose-fill ceiling insulation.
- The land is not affected by one of the matters prescribed by Section 59 (2) of the *Contaminated Land Management Act 1997*.

4 ENVIRONMENTAL SETTING

4.1 Sensitive Environmental Receptors

The nearest down-gradient watercourses are:

- An unnamed tributary is located approximately 300m to the east.
- Coxs Creek is located approximately 2.4km to the south east.
- Cooks River is located approximately 2.4km to the east.
- Cooks River is located approximately 750m to the north west.

4.2 Geology

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Triassic Age Shale of the Wianamatta Group, comprising shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone and rare coal.

4.3 Acid Sulfate Soils

A review of the NSW Department of Land & Water Conservation (DLWC) *Acid Sulphate Soil Risk Maps* (Edition Two, December 1997, Scale 1:250,000), indicated that site is not located in an ASS risk area.

The NSW ePlanning Spatial Viewer website indicates that the site is not in an area affected by acid sulphate soils (https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-property/address).

4.4 Hydrogeology

Based on available information, our desktop study indicates that the inferred groundwater flow direction would be towards the east, as shown in Figure 6 in Appendix A.

A search of the WaterNSW website borehole database, there were no monitoring wells listed within a 1km radius of the site.

A review of the regional geology and groundwater bore information indicates that the subsurface condition at the site is expected to consist of residual soils overlying relatively shallow bedrock. The occurrence of groundwater that could be utilised as a resource for beneficial use is considered to be relatively low under such conditions. A perched aquifer in the subsurface may be present.

A copy of the groundwater bore search records can be found in Appendix H.

4.5 Summary of Local Meteorology

The monthly rainfall of the local area can be represented by the data collected by Bureau of Meteorology (BOM) from the rainfall gauge located in Canterbury Racecourse, which is located approximately 4.9km east-south-east of the site. Records indicate that the mean annual rainfall since 1995 is 972.5 mm.

Reference can be made to Appendix I – Local Meteorology.

5 AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Based on the site inspection, site history, previous reports and review of available information from the desktop study, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Concern (CoC) for the site were identified. These are summarised in the following table.

Table 5: Summary of Potential Areas and Contaminants of Concern

Potential	Potentially	Potential	Potentially	Likelihood	Justification
AEC	contaminating	CoCs	Impacted	of Site	G 111/01/1
	activity		Medium	Impact	
Entire site	Importation of fill material from unknown origin	Metals, TPH, BTEX, PAH, OCP, PCB, Asbestos	Soil	Low	Based on the site observations and site topography, the presence of imported fill material is likely to be minimal.
	Potential for pesticides to have been sprayed or injected on or underneath concrete slabs	ОСР		Low	The site is not known for having been used for agricultural purposes from the 1950s when OCPs were first introduced into Australia. If use of OCPs has occurred, the impact is likely to have been localised and limited to the near surface layer.
Carpark and driveways	Leaks from vehicles	Metals, TPH, BTEX, PAH		Low	No major oil staining was observed, and the sealed surfaces were in a good condition.
Metal features	Metal degradation	Metals		Low	If this occurred, the impact would be localised to the near surface soils.
Former Building Structures	Potential Asbestos/Fibro Features	Asbestos		Low	If asbestos features were present in the former building structures, the impact would be localised to the near surface soils.
Current Building Structures	Potential Asbestos/Fibro Features	Asbestos		Low	If present, these will be removed by licensed contractors.

6 DATA QUALITY OBJECTIVES

6.1 Step 1 – State the Problem

6.1.1 Problem Statement

The site is proposed to be developed into four buildings for commercial / retail / residential uses including basement car parking and communal open spaces. As part of the planning process (Direction 2.6 – Remediation of Contaminated Land), it is a requirement that a site investigation report be prepared by a consultant to assess whether the site is suitable for the proposed development.

However, the desktop study identified some areas of potential environmental concern, in relation to imported fill of unknown origin, potential pesticide use, leaks of motor vehicles, metal degradation and potential presence of hazardous materials in current or past building structures, which may pose risks to human and environmental receptors.

6.1.2 Objectives

The objectives of the DSI are:

- To assess the potential for the soils and groundwater to have been impacted by current and historically contaminating activities.
- To assess the suitability of the site for redevelopment into four buildings for commercial / retail / residential uses including basement car parking and communal open spaces as part of Council's requirements for the DA.

6.1.3 Project Team

The nominated core project team and their responsibilities are listed in the table below.

Table 6: Project Team and Responsibilities

Project Team Member	Responsibilities
Mark Kelly – Principal Environmental Consultant	Project Manager and Technical Review
Nick Kariotoglou – Principal Environmental Scientist	Project Director and Field Representative
Saad Bin Suleman – Environmental Engineer	Field Representative and Report Author

6.1.4 Preliminary Conceptual Site Model

The preliminary CSM, based on the PSI, is summarised in the table below.

Table 7: Conceptual Site Model

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
Fill materials	Site users or the general public	Dermal contact, inhalation or ingestion of	Limited (Current)	Low	The site surfaces are predominantly sealed.
Car parking Pesticide use		exposed impacted soils	No (Future)	Negligible	If present, contaminated soils are likely to be remediated and removed for off-site disposal.
Metal degradation	The aquatic ecosystems at the nearby creeks	Migration of impacted groundwater and surface water run-off	Yes (Current)	Low	No obvious sources of contamination were observed on site that could migrate off site with surface water run-off.
			No (Future)	Negligible	Any sources of contamination will be removed.
	Underlying Aquifer	Leaching and migration of contaminants through groundwater infiltration	Limited (Current)	Low	Due to the depth to groundwater as well as the permeability of the soil profile, leachability of metals and other inorganics vertical migration of contaminants is likely to be limited.
			No (Future)	Negligible	If present, contaminated soils are likely to be remediated.

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
Asbestos in current/former buildings	Site user or visitors	Inhalation of airborne fibres	Limited (Current)	Low	If present, they are likely to be in a bonded form.
			No (Future)	Negligible	If present, contaminated soils are likely to be remediated.

6.2 Step 2 - Identify the Decisions of the Study

The decisions required to address the contamination problem are as follows:

- Is soil and groundwater contamination present within the areas of potential environmental concern identified?
- Is soil and groundwater contamination likely to present an unacceptable risk of harm to humans or the terrestrial and aquatic environments?
- Is the site currently suitable for the proposed land use being residential with minimal access to soil?
- Is there a potential for onsite/offsite migration issues?
- If not, does the site require further investigation and/or remediation works?

6.3 Step 3 - Identify Information Inputs

The following information is required for input into the decisions identified in Step 2:

- Identification of potential areas and contaminants of concern as detailed in Section 5 of this report;
- Selection of soil and groundwater assessment criteria from appropriate guidelines as detailed in Section 8 of this report;
- Collection of soil and groundwater samples from site;
- Headspace analysis for screening of VOCs present within soils using a PID;
- Measurement of groundwater quality parameters including pH, temperature, redox potential, electrical conductivity and dissolved oxygen; and
- Comparison and interpretation of results again the adopted soil and groundwater assessment criteria.

6.4 Step 4 – Define the Study Boundaries

The spatial and temporal aspects of the investigation area that the data must represent to support the decisions identified in Step 2 are as follows:

- The lateral extent of the study boundary is defined by the site boundaries as shown in the Site Location Plans (refer to Figure 1).
- The vertical extent of the study boundary is defined by the depth of the natural soils in all boreholes located at approximately 0.4 metres below the ground surface.
- The vertical extent of the study boundary is defined by the depth of the water table located at approximately 5.07 metres below the ground surface.

6.5 Step 5 - Develop the Analytical Approach

The acceptable limits for laboratory QA/QC parameters are shown in the table below and are based upon the laboratory reported acceptable limits and those stated within the NEPM 2013 Guidelines.

Table 8: Acceptable Limits for QC Samples

Type of QC Sample	Control Limit		
FIELD			
Rinsate Blanks	Analytes <lor< td=""></lor<>		
Intra-Laboratory Duplicates	RPD's <50%		
Inter-Laboratory Duplicates	RPD's <50%		
Trip Blanks	Volatiles <lor< td=""></lor<>		
Trip Spike Recovery	>70%		
LABORATORY			
Method Blanks	< Laboratory LOR		
Matrix Spike	Recovery targets: • Metals: 70% to 130% • Organics: 60% to 140%		
Laboratory Duplicate	RPD's <30%		
Laboratory Control Samples	Recovery targets: 60% to 140%		
Surrogate Spike	Recovery targets: 60% to 140%		

The following conditions should be adopted:

- If the control limits are exceeded, then an assessment of the significance of the results should be carried out;
- If the results of the DQI assessment indicate that the data set is reliable, then the data set will be deemed to be acceptable for the purposes of the investigation; and
- If the measured concentrations of soil and groundwater samples analysed meet their respective validation criteria, then no additional assessment is required is required.

6.6 Step 6 - Specify Limits on Decision Errors

There are two types of decision errors:

- **Sampling errors**, which occur when the samples collected are not representative of the conditions within the investigation area; and
- **Measurement errors**, which occur during sample collection, handling, preparation, analysis and data reduction.

These errors may lead to following (null hypothesis):

- Deciding that the site is not suitable for the proposed development when it actually is (Type I error);
- Deciding that the site is suitable for the proposed development when it is actually not (Type II error);
- Deciding that the risks to human health from soil vapour concentrations are high and require further management or remediation, when the risks are actually low (Type I error); and
- Deciding that the risks to human health from soil vapour concentrations are low and requires no further management, when the risks are actually high (Type II error).

A 5% significance level has been selected for Type I errors on the basis that 95% of the data set will satisfy the DQIs. Therefore, the acceptable limit of the decision errors is based on a 5% probability of the hypothesis being incorrect.

An assessment will be made as to the likelihood of a decision error being made based on:

- The acceptable limits for inter/intra laboratory duplicate sample comparisons as specified in Step 5 of the DQOs; and
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM Guidelines.

If the concentration of a particular contaminant of concern exceeds its assessment criteria, then a further assessment is required to address the significance of the result. Statistical analysis based on 95% UCL may be used to assess the significance of the data provided the following conditions are met:

- the arithmetic mean of the data set must be less than its respective threshold level; that is, it is acceptable for individual results to exceed its respective threshold level, but the cumulative mean of the data set of soil sample results must not exceed the threshold level;
- the standard deviation of the data set is less than 50% of the relevant threshold level; and
- no individual sample result should be greater than 250% of the relevant threshold level.

Ecological data is not included in this assessment process as ecological results cannot be statistically interpreted.

6.7 Step 7 - Optimise the Design for Obtaining Data

The optimum design for obtaining data in order to achieve the Data Quality Objectives is as follows:

- Only NATA-accredited environmental testing laboratories will be commissioned to analyse soil and groundwater samples and will implement a quality control plan conforming to the NEPM (Assessment of Site Contamination) Measure Schedule B(3)
 Guidelines for Analysis of Potentially Contaminated Soils;
- An assessment of the Data Quality Indicators to determine if the field procedures and laboratory analytical results are reliable;
- The investigation will be carried out by an experienced and qualified Environmental Scientist, who is trained in sampling at contaminated sites in accordance with Aargus protocols based on best practice industry standards;
- Collection of QA/QC samples at frequencies prescribed in the NEPM Guidelines; and
- In accordance with the NSW EPA "Sampling Design Guidelines" (September 1995) a minimum of twenty-three (23) sampling points for a site area of 1.175 hectares will be adopted to provide general site coverage.

7 DATA QUALITY INDICATORS

7.1 General

The five Data Quality Indicators (DQIs) comprising completeness; comparability; representativeness; precision and accuracy provide an assessment of the reliability of field procedures and laboratory analytical results in accordance with the NEPM 2013 Schedule B2 Guidelines on Site Characterisation, Appendix C – Assessment of data quality. These are addressed in the following sub-sections.

7.2 Completeness

Data Completeness is a measure of the amount of useable data (expressed as %) from a data collection activity. The completeness is equal to the percentage of valid quality assurance and quality control results.

The assessment should address the following:

Table 9: Data Completeness

Field	Laboratory
 All critical locations are sampled; All samples collected from critical grids and depths; Consistency in the use of standard operating procedures, equipment, sampler; Completion and correctness of field documentation. 	 All critical samples and analytes are analysed in accordance with the DQOs; Appropriateness of laboratory methods and PQLs.

The minimum target frequency for each type of QA/QC sample should be carried out in accordance with the following table:

Table 10: QA/QC Requirements

Field QA/QC Sample	Frequency (Soil / Groundwater)
Intra-Laboratory Duplicate	1 in 20 samples
Inter-Laboratory Duplicate	1 in 20 samples
Field Blanks	1 per day (rinsate)
Trip Blank	1 per sample batch
Trip Spike	1 per sample batch

Where any of the above objectives are not achieved for particular samples, steps will be taken to rectify the non-conformance, if possible. Alternatively, data qualifiers detailing the nature of the quality problem will be documented in the report and attached to relevant data in the result summary tables.

The target for overall completeness for each data set is a minimum of 95%. A data completeness of less than 95% may be accepted where it can be justified that the non-conformance does not have a significant effect on the outcome of the results.

7.3 Comparability

Data Comparability is the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.

The qualitative assessment should address the following:

Table 11: Data Comparability

Consistency in the use of standard operating	Consistency of analytical methods and limits
procedures, equipment, sampler Consistency in the method of sample collection for each media Quantification of influence by climatic conditions	of reporting (LOR) for each analyte Whether laboratory limits of reporting are set at < 20% of the adopted site criteria value for each analyte Consistent use of one primary and one secondary laboratory

7.4 Representativeness

Data Representativeness is the confidence (expressed qualitatively) that data are representative of each media present on the site.

The qualitative assessment should address the following:

Table 12: Data Representativeness

Field		Laboratory
•	Samples are collected in accordance with the DQOs	 All samples are extracted and analysed within their respective holding times
•	Receipt of samples within holding times	
•	Receipt of intact samples	
•	Receipt of adequately preserved samples	

7.5 Precision

Data Precision is a quantitative measure of the variability (or reproducibility) of data.

Intra-laboratory or Inter-laboratory Duplicate Samples (B) results are compared with Primary Sample (A) results using Relative Percentage Differences (RPDs) according to the following formula:

$$\%RPD = \left| \frac{A - B}{A + B} \right| \times 200$$

Duplicate sampling rates for this assessment (**for each separate sample batch**) are to be tested for all the same analytes as the primary sample:

Table 13: Data Precision

Type of QC Sample	Control Limit
Field Intra-Laboratory Duplicate (Blind)	RPD < +/- 50%
Field Inter-Laboratory Duplicate (Split)	RPD < +/- 50%

Where the laboratory has reported results for a particular analyte below the limit of reporting for either the primary sample or a duplicate sample, the RPD is reported as 'Not Calculable' or NC. A discussion should be made as to which sample should be adopted and compared against the relevant assessment criteria. However, no discussion is required where both the primary sample and the duplicate sample for a particular analyte are below the limit of reporting.

7.6 Accuracy

Data Accuracy is a quantitative measure of the closeness of reported data to the true value. Laboratory measured recovery of analytes in lab control samples with known concentrations. Laboratory QA/QC testing is to include:

Table 14: Data Accuracy

Laboratory QA/QC Sample	Frequency
Method Blank	1 per 20 samples
Matrix Spike	1 per 20 samples
Laboratory Duplicate	Laboratory defined
Laboratory Control	Laboratory defined
Surrogate Spike	All organic samples

8 SITE INVESTIGATION AND SCREENING LEVELS

8.1 General

The selection of appropriate human health, ecological and groundwater site assessment criteria were based on the following guiding documents:

- "Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000" (ANZECC);
- "Australian Drinking Water Guidelines 2011" (ADWG);
- "Guidelines for Managing Risk to Recreational Waters 2008 (GMRRW); and
- "National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1)", NEPC (2013).

Full details of the site investigation and screening levels for each potential contaminant of concern in soils and groundwater identified in Section 5 are presented in Appendix J.

8.2 Soils Investigation and Screening Levels

8.2.1 Health Investigation Levels (HILs)

The NEPM presents Tier 1 Health Investigation Levels (HILs) for a broad range of chemicals such as metals, inorganics, PAHs, phenols, pesticides and other organics. The HILs are applicable to generic land uses such as residential, commercial/industrial or public open space and all soil types, generally within the first 3 metres of soil below ground level. The HILs have been applied to assess human health risks via all relevant pathways of exposure.

Based on the proposed development, soil investigation results within the site will be assessed against the **HIL** 'B' – Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

8.2.2 Health Screening Levels (HSLs)

The NEPM presents Tier 1 Health Screening Levels (HSLs) for the following petroleum compounds and fractions:

- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Naphthalene; and
- TPH C6-C10 and TPH >C10-C16 fractions

The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between the ground surface and soils >4 metres below ground level. The HILs have been applied to assess human health risks via the inhalation and direct contact pathways of exposure.

Based on the proposed development, soil investigation results within the site will be assessed against the HSL "A & B".

8.2.3 Ecological Investigation Levels (EILs)

The NEPM presents Ecological Investigation Levels (Interim EILs) for As, Cu, CrIII, Ni, Pb, Zn, DDT and naphthalene.

The EILs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The EILs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of soil at the final surface/ground level.

Site specific EILs for Copper, Zinc, Nickel and Chromium III can be derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula EIL = ABC + ACL.

The ABC of a contaminant is the soil concentration in a specified locality that is the sum of the naturally occurring background level and the contaminant levels that have been introduced from diffuse or non-point sources by generating anthropogenic activity not attributed to industrial, commercial, or agricultural activities.

The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required. ACLs are based on the soil characteristics of pH, CEC and clay content. Different soils types / profiles will have different contaminant EILs rather than a single generic EIL for each contaminant. ACLs apply chromium III (CrIII), copper (Cu), nickel (Ni) and zinc (Zn) for site-specific EIL determination. The soil properties to be measured for site-specific derivation of ACLs for CrIII, Cu, Ni and Zn are summarised below:

- pH Cu
- CEC Cu, Ni, Zn
- % clay CrIII

Note – the lowest concentration of copper that is derived from the pH or the CEC calculation is to be used for the ACL.

Insufficient data was available to derive ACLs for As, Pb, DDT and naphthalene. As a result, the derived EILs are generic to all soils and are presented as total soil contaminant concentrations in Tables 1(B)4 and 1(B)5.

8.2.4 Ecological Screening Levels (ESLs)

Table 1B (6) of the NEPM presents Ecological Screening Levels (ESLs) for TPH C6-C40 fractions, BTEX and benzo(a)pyrene.

The ESLs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The ESLs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of coarse or fine soil at the final surface/ground level.

8.2.5 Petroleum Hydrocarbon Management Limits

Table 1B (7) of the NEPM presents petroleum hydrocarbon management limits for application to TPH fractions C_6 - C_{10} , $>C_{10}$ - C_{16} , $>C_{16}$ - C_{34} and $>C_{34}$ - C_{40} . The management limits are applicable for coarse or fine soils in residential, parkland, public open space or commercial/industrial land uses following consideration of relevant ESLs and HSLs.

Based on the proposed development, soil investigation results within the site will be assessed against the 'Residential, parkland and public open space'.

8.2.6 Asbestos

Health screening for asbestos in soil, which are based on scenario-specific likely exposure levels, are adopted from the WA DoH guidelines and are referred in Table 7 in Schedule B1.

Table 15 Health screening levels for asbestos contamination in soil

	Health Screening Level (w/w)			
Form of asbestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF ⁵ (friable asbestos)	0.001%			
All forms of asbestos	No visible asbestos for surface soil			

- 1. Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
- 2. Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

- 3. Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
- 4. Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
- 5. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres.

8.3 Groundwater Investigation and Screening Levels

8.3.1 Potential Beneficial Uses

Groundwater investigation and screening levels were established by identifying the potential beneficial uses of groundwater down-gradient from the site based on the Six Environmental Values presented in the table below.

Table 16: Potential Beneficial Uses of Groundwater

Environmental Value	Applicability
Freshwater aquatic ecosystem	✓
Marine aquatic ecosystem	×
Agricultural use - irrigation	×
Agricultural use – stock watering	*
Recreational use	✓
Raw drinking water	*

The applicable Environmental Values were selected on the basis of the following down-gradient receptors as identified in Section 4.1 of this report:

- Recreational users and aesthetics at Cooks River.
- The marine water aquatic ecosystem at Cooks River.

No abstraction wells for agricultural use were identified within 1 km of the site.

Page 43 of 69

For each relevant Environmental Value identified above, the groundwater investigation and screening levels adopted are discussed in the following sub-sections. Full details of the investigation and screening levels for potential contaminants of concern in groundwater are presented in Appendix J.

If the screening or investigation levels are exceeded, then further consideration will be given to processes such natural attenuation, advection, adsorption and contaminant flux to assess potential risks to down-gradient aquatic ecosystems or drinking water sources.

8.3.2 Protection of Aquatic Ecosystems

Table 1C of the NEPM presents Groundwater Investigation Levels (GILs) for the protection of fresh water and marine water in slightly to moderately disturbed ecosystems. However, where the closest sensitive receptor is high value or highly disturbed, Section 3.1 of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000) provides a range of water quality guidelines values based upon three levels of ecosystem conditions as shown in the table below.

Table 17: Aquatic Ecosystem Values

Ecosystem Value	Protection Level	Brief Definition	Applicability
High conservation or ecological value systems	99%	Effectively unmodified, with ecological integrity regarded as intact.	×
Slightly to moderately disturbed ecosystems	95% or 99% for highly bioaccumulating toxicants	Small impacts to aquatic biological diversity within moderately cleared catchments with reasonably intact riparian vegetation.	~
Highly disturbed ecosystems	90% or 80%	Measurably degraded ecosystems typically associated with shipping ports or urban catchments.	×

Based on observations made during the site walkover, the aquatic ecosystem value of the Cooks River area was considered to be slightly to moderately disturbed and that the NEPM GILs are applicable.

However, where contaminants are potentially bio-accumulative, trigger values for the protection of 99% of species were used. Low reliability trigger values presented in Table 3.4.1 of the ANZECC 2018 guidelines were also adopted in the absence of high or moderate reliability trigger values.

8.3.3 Recreational Water Use and Aesthetics

The GMRRW guidelines (as referenced in NEPM) recommend adopting a multiplication factor of 10 to 20 to the ADWG for the assessment of recreational water quality. This is based on the rationale that the ADWG guideline values are based on a daily consumption of 2L, which is considered to be very conservative for application to recreational water exposure. On this basis, a multiplication factor of '10' (i.e. recreational consumption of 200mL per day) will be applied to the ADWG health guidelines to establish screening criteria.

8.3.4 Groundwater Health Screenings Levels for Vapour Intrusion

Table 1A(4) of the NEPM presents Groundwater Health Screening Levels (HSLs) for vapour intrusion. The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between 2m and >4 metres below ground level. The HSLs have been applied to assess human health risks via the inhalation pathway of exposure.

If site conditions are conducive to biodegradation, the following factors will be applied to the HSLs:

- Factor of x10 for depths to source of 2 to <4m; and
- Factor of x100 for depths to source of 4m and greater where the vapour source strength is 100 mg/L (100,000 mg/m³) or less.

For groundwater concentrations exceeding their respective solubility limits in Table 1A(4) of Schedule B1 of the NEPM, it is considered that the soil vapour concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario and is denoted as 'NL' (not limiting).

8.4 Export of Waste

To assess the waste classification of materials to be disposed of off-site, the NSW EPA refers to the NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste".

9 SOIL INVESTIGATION

9.1 General Methodology

The soil investigation was carried out on Tuesday 31st August 2021 and was designed to meet the Data Quality Objectives. The fieldwork procedures adopted were carried out in general accordance with the Aargus fieldwork protocols, which are based on industry standard practice as prescribed in the NEPM.

Prior to the commencement of the intrusive investigation, a Dial-Before-You-Dig (DBYD) search was carried out and a professional services locator was engaged to clear the proposed sampling locations for underground services.

Upon clearance of the proposed sampling locations, concrete surfaces at each borehole location (where present) were cored by using a 200mm diameter diatube. The first 1.2m depth at each sampling location was dug using hand tools to confirm the absence of underground services prior to drilling.

Each borehole was drilled using hollow flight augers attached to a truck-mounted drill rig.

The boreholes were backfilled with clean spoil or clean sand/gravel. Where a semi-confined or confined layer was encountered, a bentonite seal was used to prevent potential cross-contamination between the overlying and underlying strata.

9.2 Sampling Design Rationale

Twenty-three boreholes (BH1 to BH23) were drilled by adopting a systematic grid sampling pattern across the site to provide general site coverage with consideration given to accessibility and site features.

It is considered that the number of sampling points adopted meets the minimum requirements of the NSW EPA "Sampling Design Guidelines" (1995) for a site area of 1.175 hectares and to detect a hotspot diameter of 25.7. The borehole locations are shown in Figure 4 of Appendix A.

9.3 Sampling Density and Sampling Depth

Boreholes were advanced through topsoil / fill material and terminated at least 0.5m into natural soils to allow for the collection of at least one soil sample from fill material and one from natural soils. However, a maximum target depth of 9 metres was adopted in borehole locations where groundwater wells were to be installed.

9.4 Sampling Methodology

Soil sampling was carried out in general accordance with Aargus Fieldwork Protocols. In summary:

- Soil samples were collected directly from the drilling augers from each soil type or change in lithology and approximately every 1 metre depth where no change in material was apparent.
- Samples were transferred into clean laboratory supplied containers using a hand trowel.
- In general, each soil sample was divided into two sub-samples. One of the sub-samples was placed into a laboratory-supplied container and a second sub-sample was placed in a separate zip-lock bag for field headspace screening using a PID.

Sampling of asbestos was undertaken as follows:

 One wetted 500ml sample from each sampling location was submitted for laboratory analysis for AF.

9.5 Field Tests

A calibrated Photo-ionisation Detector (PID) meter was used to obtain the following field measurements:

- Background concentrations of ionisable volatile organic compounds (VOCs) in the ambient air taken approximately 5 to 10 metres upwind of the general work area; and
- Headspace analysis of bagged soil samples collected to detect the presence of ionisable VOCs.

The PID readings were observed before and after each measurement of a sample to ensure that the PID was operating correctly. The procedures followed in performing field headspace on soil samples can be found in the Aargus Field Protocols.

Readings of PID maximums, fluctuations and general comments of observation were recorded in Aargus field record forms included in Appendix L. The PID calibration certificate can be found in Appendix L.

9.6 Soil Laboratory Analysis

Soil samples were submitted to their respective laboratories as specified in Section 11.2. The schedules of analysis for each sampling batch are presented in Appendix O.

10 GROUNDWATER INVESTIGATION

10.1 General Methodology

The groundwater investigation was carried out on the 2nd September 2021. Groundwater gauging, purging and sampling methodology adopted was carried out in accordance with Aargus fieldwork protocols.

Groundwater-related field record forms included in Appendix L.

10.2 Sampling Design Rationale

Four (4) of the boreholes drilled were converted into groundwater monitoring wells on the 2nd September 2021 and were designated as GW1 (BH1), GW2 (BH4), GW4 (BH21) & GW5 (BH8). The locations of the monitoring wells are shown on Figure 4 of Appendix A and were selected on the following basis:

- To provide an assessment groundwater conditions within the site.
- Establish groundwater flow direction.

A list of the proposed groundwater monitoring wells and their function in the monitoring network are presented in the table below.

Table 18: Groundwater Network

Well ID	Status	Function
GW1	Installed on the 31.08.2021	Down-gradient well and general monitoring
GW2	Installed on the 31.08.2021	Up-gradient well and general monitoring
GW4	Installed on the 31.08.2021	Down-gradient well and general monitoring
GW5	Installed on the 31.08.2021	Down-gradient well and general monitoring

10.3 Well Installation

Groundwater monitoring well were constructed during the date by adopting the following methodology:

- 50mm diameter, Class 18PVC threaded and flush joined casing and 0.45 machineslotted screens were used;
- The screen extended 1m above and 2m below the standing water table measured after drilling;
- Coarse, washed sand and gravel was placed in the annulus surrounding the piping to a height of 0.2m above the screen;
- Bentonite pellets were placed in the annulus above the sand to form an impermeable plug of a thickness of 1.0m and near the top of the well to prevent surface runoff from entering directly into the well;
- A PVC cap was placed on the casing; and
- 100mm diameter stainless steel flushed covers were used for all well finishes and concreted onto the ground surface.

A summary of the groundwater monitoring well construction details installed are listed in the table below and are also presented in full detail within their respective borehole logs included in Appendix K.

Table 19: Summary of Well Construction Details

Well ID	Total Depth (m BGL)	Screening Zone (m BGL)	Surface Level (RL AHD)	Lithological Description
GW1	9.1	6.1-9.1	45.68	Shale bedrock
GW2	7.9	4.9-7.9	48.47	Shale bedrock
GW4	7.7	4.7-7.7	46.07	Shale bedrock
GW5	9.0	6.0-9.0	46.80	Shale bedrock

10.4 Groundwater Gauging

Prior to purging and sampling of groundwater at each monitoring well, groundwater levels were measured and the presence of phase-separated hydrocarbons (PSH) were checked using a hand bailer. No PSH were observed.

Measurements of groundwater well depths were also obtained to assess whether siltation of the well had occurred following well development. No siltation was observed.

10.5 Groundwater Purging and Sampling

Wells were purged and sampled using a bailer with a low flow attachment.

Purging of groundwater was carried out until three consecutive readings (where possible) from a calibrated Water Quality Meter were measured within the stabilisation criteria specified for each physico-chemical parameters listed in the table below.

Table 20: Groundwater Quality Stabilisation Criteria

Parameter	Measurement Unit	Stabilisation Variance
Temperature	°C	± 0.2
рН	pH units	± 0.05
Oxidation Reduction Potential (ORP)	mV	± 10 mV
Dissolved Oxygen (DO)	mg/L	± 0.2 or 10%
Electrical Conductivity	mS/cm	± 3%

Groundwater samples were collected only after stabilised groundwater quality readings were achieved to ensure representative sampling and then transferred into laboratory-supplied sample containers appropriate for laboratory analyses. A copy of the calibration certificate can be found in Appendix L.

10.6 Laboratory Analyses

Groundwater samples were submitted to their respective laboratories as specified in Section 11.2. The schedules of analysis for each sampling batch are presented in Appendix O.

11 QUALITY ASSURANCE / QUALITY CONTROL

11.1 Field QA/QC

11.1.1 General

The frequency required for each field quality assurance / quality control (QA/QC) sample is presented in the table below.

Table 21: QA/QC Sampling Frequency

	Intra-Lab Duplicates	Inter-Lab Duplicates	Rinsates	Trip Blanks	Trip Spikes
Sampling	1 in 20 primary	1 in 20 primary	1 / Day	1 / Day	1 / Day
Frequency	samples	samples			

11.1.2 Field Duplicates

Duplicates of primary samples were collected to enable the assessment of variability in analyte concentrations between samples collected from the same sampling point. The tables below list the duplicate soil and groundwater samples collected with their corresponding primary samples.

Table 22: Soil Field Duplicate Samples

Primary Sample ID	Sample Depth (m bgl)	Blind Duplicate ID	Split Duplicate ID	Date Sampled
ВН7	0.3 – 0.4	D1	SS1	31.08.2021
BH4	0.2 - 0.4	D2	SS2	31.08.2021

Table 23: Groundwater Field Duplicate Samples

Primary Sample ID	Screen Zone (m bgl)	Blind Duplicate ID	Split Duplicate ID	Date Sampled
GW1	6.1-9.1	GWD1	GWSS1	02.09.2021

11.1.3 Rinsates

Rinsate samples recovered for each day in which sampling took place to identify possible cross contamination between the sampling locations are listed in the table below.

Table 24: Rinsate Samples

Sample ID	Equipment Type	Sample Media	Date Collected
R1	Hand Trowel	Soil	31.08.2021
R2	WQM	Water	02.09.2021

11.1.4 Trip Blanks / Spikes

Trip spike and trip blank samples were collected to assess the effect of sample handling on volatile concentrations in the samples collected and are listed in the table below.

Table 25: Trip Blank/Trip Spikes

Sample ID	QC Sample Type	Media	Date Collected
TB1	Trip Blank	Soil	31.08.2021
TS1	Trip Spike	Soil	31.08.2021
TB2	Trip Blank	Groundwater	02.09.2021
TB2	Trip Spike	Groundwater	02.09.2021

11.1.5 Sample Handling, Storage and Transport

The following sampling handling, storage and transport procedures were adopted to ensure sample integrity:

- Samples were collected in laboratory supplied containers. A list of sample preservation methods and the types of sample containers used are attached in Appendix M.
- Soil and groundwater sample containers were placed immediately into a chilled cooler box and dispatched to their respective analytical laboratories on the same day. If this was not possible, samples were temporarily held overnight in the Aargus office refrigerator at a temperature of no greater than 4 °C and dispatched the following day.
- A Chain of Custody form (COC) was completed for all samples collected and included with the samples for transport to their respective laboratories for chemical analysis. Copies of COCs are included in Appendix N.
- All glass bottles were individually bubble wrapped for protection and insulated containers/coolers were used for sample shipment.
- Disposable nitrile gloves were used for OH&S purposes and were changed between every sample location.

11.1.6 Decontamination Procedures

The decontamination of non-dedicated sampling equipment was achieved by washing with phosphate-free detergent and tap water, followed by a final rinse with distilled water. Decontamination was conducted after the collection of samples at each sample location. A clean pair of disposable gloves was used when handling each sample.

The drilling augers were decontaminated between sampling locations by physically removing soil material between boreholes, washing the augers with Decon 90 and rinsing them with water.

We highlight that separate bailer chord and disposable bailers were used for each monitoring well during development and when sampling. These equipment items were not subject to decontamination procedures.

11.1.7 Calibration of Equipment

The 10.6eV lamp of the PID was calibrated with isobutylene gas at 100ppm prior to commencement of fieldwork and prior to commencement of each day's fieldwork. The battery in the PID unit was recharged after every day's use in the field. The Water Quality Meter was calibrated prior to the commencement of groundwater sampling.

Copies of calibration records for each relevant item of equipment used can be found in Appendix L.

11.2 Laboratory QA/QC

11.2.1 Laboratories Used

The following NATA-accredited laboratories were commissioned to carry out laboratory analysis of soil and groundwater samples collected:

- Primary Laboratory Eurofins MGT (Sydney)
- Secondary Laboratory ALS Environmental
- ASET Environmental conducted asbestos analysis on selected primary soil samples

These laboratories also operate Quality Systems that are designed to comply with ISO/IEC 17025. All primary samples, blind duplicates, rinsate samples, trip blank/spikes were dispatched to the primary laboratory. All split samples were dispatched to the secondary laboratory. Laboratory Certificates of Analysis are included in Appendix N.

11.2.2 Holding Times

The holding times for chemicals analysed are presented in Appendix M and were based on USEPA methods, Standard Methods for the Examination of Water and Wastewater (APHA).

11.2.3 Test Methods and Practical Quantitation Limits

The test methods adopted by the laboratories are listed in Appendix M and Practical Quantitation Limits (PQLs) adopted are specified within the Laboratory Certificates of Analysis included in Appendix N.

The methods used by the laboratories generally comply with those listed in the NEPM such as Standards Australia and International standards (US EPA SW-846, APHA 2005, ASTM 2008).

Alternate methods may be used by the laboratories however the alternative method must be at least rigorous and reliable as the reference method, and either that:

- it has been validated against an appropriate certified reference material (CRM) on the range of soil types and concentrations most likely to be analysed. This requires adequate recovery of analytes using CRMs during method validation, as well as regular participation in national proficiency trials by bodies such as the National Measurement Institute (NMI) or Proficiency Testing Australia (PTA) or other accredited provider; and / or
- it has been verified against quantitative data generated by a laboratory that is accredited for the reference method to ISO 17025 by NATA or one of its mutual recognition agreement partners.

The laboratory should document the method performance verification and make the data available for independent audit.

11.3 QA/QC Data Evaluation

A full evaluation of the Data Quality Indicators (DQIs) for both fieldwork and laboratory procedures is presented in Appendix P. These were assessed with reference to Appendix V of the NEPM and Guidelines for the NSW Site Auditor Scheme (3rd ed.), 2017. In summary, the findings of the QA/QC evaluation indicated the following:

- Data Completeness The data set is considered to be adequately complete.
- Data Comparability The data set is considered to be adequately comparable.
- Data Representativeness The data set is considered to be adequately representative.
- Data Precision The data set is considered to be adequately precise.
- Data Accuracy The data set is considered to be adequately accurate.

The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were consistent with Aargus protocols and were found to meet the DQOs for this project.

It is therefore considered that the data is sufficiently reliable and that the results can be used for the purpose of this project.

12 FIELD OBSERVATIONS

12.1 Geology

Based on surface and sub-surface conditions observed during the intrusive investigation, the surface and sub-surface profile across the site is summarised in the table below.

Table 26: Summary of Geological Observations

Geological Unit	Lithological Description	Depth Ranges: Top to Base (m bgl)
NA	Concrete / Bitumen	
Topsoil / Fill	Sandy Clay, low to medium plasticity, dark brown with medium gravel and asphalt pieces	Ground level to 0.9m
Natural Soils	Silty CLAY	0.3m to 2.0m
Bedrock	Shale	2.0m to 9.1m

The following additional observations were made:

- No hydrocarbon staining was observed within any of the borehole locations.
- No hydrocarbon odours were encountered within any of the borehole locations.
- No fibre-containing fragments were observed in any of the borehole samples.

We recommend that this section be read in conjunction with Figure 4 (Sample Location Plan) in Appendix A and the Daily Work Sheets in Appendix L.

12.2 Field Headspace Results

Ionisable VOC detections in PID readings taken from soil samples subjected to field headspace analysis were recorded between 1.1ppm and 40.5ppm. The PID field record forms can be found in Appendix L.

12.3 Groundwater Observations during Drilling

Seepage or groundwater not detected during the entire drilling process for all of the boreholes across the site.

12.4 Groundwater Monitoring Results

12.4.1 Groundwater Measurements

Groundwater levels measured and observations made during the monitoring event carried out on the 2^{nd} September 2021 are summarised in the table below.

Table 27: Groundwater Elevations and Observations

Well	Well Depth	R.L. (m AHD)	Groundwater	Groundwater	PSH Depth (m
ID	(m BGL)		Depth Measured	Level (m AHD)	BGL)/
			(m BGL)		Thickness (mm)
GW1	9.1	45.68	5.07	40.61	None
GW2	7.9	48.47	6.50	41.97	None
GW4	7.7	46.07	No water	-	None
GW5	9.0	46.80	6.79	40.01	None

12.4.2 Physio-Chemical Parameters

The stabilised measurements taken for each groundwater physico-chemical parameter are summarised in the table below. Copies of detailed field measurement records for each monitoring well location are presented in Appendix L.

Table 28: Physico-Chemical Parameters

Well ID	Temperature (°C)	pН	EC (S/cm)	Redox (mV)	DO (ppm)
GW1	16.6	7.33	14.456	209.2	11.2
GW2	16.7	7.39	8.148	212.3	10.5
GW5	16.5	7.06	12.348	221.3	11.5

13 LABORATORY RESULTS

13.1 General

A comparison of soil and groundwater laboratory results against their respective assessment criteria (as specified in Section 8) are presented in the summary tables in Appendix O. Certificates of laboratory analysis are attached in Appendix N. A discussion of the results is presented in the following sub-sections.

13.2 Soil Results

13.2.1 Heavy Metals

13.2.1.1 Health Investigation Levels (HILs)

As indicated in Table A1, the concentrations of the discrete heavy metals were below the Health Investigation Level (HIL) for a residential unit development, that being the HIL 'B'.

13.2.1.2 Ecological Investigation Levels (EILs)

As indicated in Table A1, the arsenic concentrations were below the Ecological Investigation Level (EIL) for urban residential and public open space.

The EILs for Copper, Zinc and Nickel and Chromium III were derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula EIL = ABC + ACL.

The ABC for the site has been determined by recovering a sample from an appropriate reference point, that being boreholes BH3 (0.6-0.7m), BH12 (0.5-0.6m) and BH19 (0.6-0.7m) that being samples of natural strata from within the site.

The ABC concentrations are summarised in Table A3.

The results of pH and CEC and %clay for the natural soil samples are summarised in Table A2. Based on the results in Table A2, the site ACLs for Cu, Ni and Zn have been derived and are provided in Table A3.

The calculated EIL for Cu, Pb, Ni and Zn, after appropriate rounding, have been summarised in Table A3.

Therefore, as shown in Table A4, the, Cu, Pb, Ni and Zn concentrations were below the site derived EILs.

13.2.2 TRH, BTEX, NAPHTHALENE &/OR BENZO(a)PYRENE

13.2.2.1 Health Screening Levels (HSLs)

As indicated in Table B1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A' & HSL 'B' for a clay soil profile with a source depth of "0m to <1m".

13.2.2.2 Ecological Screening Levels (ESLs)

As indicated in Table B2, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were below the ESL for a fine grained soil texture in an "urban residential and public open space" environment.

13.2.2.3 Management Limits

As indicated in Table B3, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}) and F4 (C_{34} - C_{40}) concentrations were below the Management Limits for a fine grained soil texture in an "residential parkland and public open space" environment.

13.2.3 PAH, OCP & PCB

13.2.3.1 Health Investigation Levels (HILs)

As indicated in Table C, the concentrations of the benzo(a)pyrene (as TEQ) and Total PAH, were below the Health Investigation Level (HIL) for a residential unit development, that being the HIL 'B'.

As indicated in Table D, the concentrations of the OCP and PCB were below the Health Investigation Level (HIL) for a residential unit development, that being the HIL 'B'.

13.2.3.2 Ecological Investigation Levels (EILs)

As indicated in Table C, the concentrations of naphthalene were below the Ecological Investigation Level (EIL) for urban residential and public open space.

As indicated in Table D, the concentrations of DDT/DDE/DDD were below the Ecological Investigation Level (EIL) for urban residential and public open space.

13.2.3.3 Ecological Screening Levels (ESLs)

As indicated in Table C, the benzo(a)pyrene concentrations were below the ESL for a fine grained soil texture in an "urban residential and public open space" environment.

13.2.4 Asbestos

As indicated in Table E, asbestos was not detected in any of the samples analysed.

13.3 Groundwater Results

13.3.1 Heavy Metals

As indicated in Table E, the heavy metal concentrations were below the assessment criteria (Fresh water and water for recreational purposes) with exception of the following:

- The arsenic concentration of 110µg/L in GW2 detected above the adopted criteria of 24µg/L for fresh water and 50µg/L for water for recreational purposes.
- Cadmium concentrations in GW1, GW5 & Duplicate GWD1 detected above the adopted criteria of 0.2µg/L for fresh water.
- The chromium concentration of 3μg/L in Split GWSS1 detected above the adopted criteria of 1μg/L for fresh water.
- Copper concentrations in GW1, GW5 & Duplicate GWD1 detected above the adopted criteria of 1.4µg/L for fresh water.
- The nickel concentration of $25\mu g/L$ in GW2 detected above the adopted criteria of $11\mu g/L$ for fresh water.

13.3.2 TRH, BTEX & PAH

13.3.2.1 Fresh & Recreational

As indicated in Table F, the BTEX concentrations were either less than the laboratory limit of reporting (LOR) and/or below the assessment criteria (fresh water and water for recreational purposes).

13.3.2.2 Health Screening Levels (HSLs)

As indicated in Table G, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A' & HSL 'B' for a clay soil profile with a source depth of "4m to <8m".

13.3.3 PAH

As indicated in Table H, the PAH concentrations were below the assessment criteria (Fresh water and water for recreational purposes).

14 DISCUSSION OF RESULTS

14.1 Soil Quality

The soil assessment revealed the following:

- Heavy metals concentrations were below the HIL 'B' and site derived EILs.
- TPH / BTEXN concentrations were below the HSL 'A&B', ESLs and Management Limits.
- PAH, OCP & PCB concentrations were below the HIL 'B', EILs and ESLs.
- Asbestos was not detected in any of the samples analysed.

14.2 Groundwater Quality

The groundwater assessment revealed the following:

- Heavy metals concentrations analysed in groundwater (with the exception of arsenic, cadmium, chromium, copper and/or nickel) appeared to fluctuate between meeting or exceeding their respective assessment criteria at various monitoring locations across the site. It was considered that the heavy metals present within the bedrock aquifer were likely to be background concentrations given that no other potential sources of contamination were identified within the immediate vicinity of the site.
- TRH and BTEX concentrations were below the site assessment criteria.
- PAH concentrations were below the site assessment criteria.

15 CONCLUSION AND RECOMMENDATIONS

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil and groundwater contamination at the site is negligible within the context of the proposed use of the site for four buildings for commercial / retail / residential uses including basement car parking and communal open spaces development.

The site is therefore considered to be suitable for the proposed use.

Any soils requiring removal from the site, as part of future site works, in particular to those beneath the existing site features, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

Thank you for the opportunity to undertake this work. We would be pleased to provide further information on any aspects of this report.

For and on behalf of

Aargus Pty Ltd

Written by:

Saad Bun Suleman

Environmental Engineer

Reviewed By:

Mark Kethy

Mark Kally

Principal Environmental Consultant

LIMITATIONS

The Aargus assessment is based on the result of limited site investigations and sample testing. Neither Aargus, nor any other reputable consultant, can provide unqualified warranties nor does Aargus assume any liability for site conditions not observed or accessible during the time of the investigations.

Despite all reasonable care and diligence, the materials encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions, truck movement or contractor movement of soils and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to Aargus investigations and assessment.

This report and associated documentation and the information herein have been prepared solely for the use of the client at the time or writing the report and is valid (for the purposes of management or transport of material) for a period of one month only from the date of issue. Any other reliance assumed by third parties on this report shall be at such parties' own risk. Any ensuing liability resulting from use of the report by third parties cannot be transferred to Aargus.

Whilst this report provides a review of site conditions encountered at sampling locations within the investigation, it should be noted that if materials are proposed to moved from site - Part 5.6, Section 143 of the Protection of the Environment Operations (POEO) Act 1997 states that is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that all material removed from a site must be accompanied by an appropriate waste classification report and materials are disposed of appropriately. An environmental or validation report does not constitute a waste classification report and results are treated

9th September 2021

Detailed Site Investigation, Ref: ES8338

Property: 167 Hume Highway, Greenacre NSW Page 68 of 69

differently. Aargus accepts no liability for the unlawful disposal of waste materials from any site. Aargus does not accept any responsibility for the material tracking, loading, management, transport or disposal of waste from the site. If material is to be removed from a site, before disposal of any material to a licensed landfill is undertaken, the site owner must ensure an appropriate waste classification exists for all materials on the site planning to be removed, the waste producer will need to obtain prior consent from the licensed landfill/recycler. The receiving site should check to ensure that the material received matches the description provided in the report.

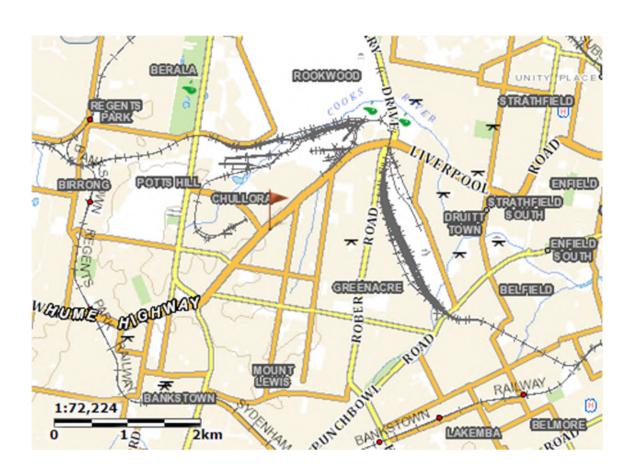
Opinions are judgements, which are based on our understanding and interpretation of current regulatory standards, and should not be construed as legal opinions.

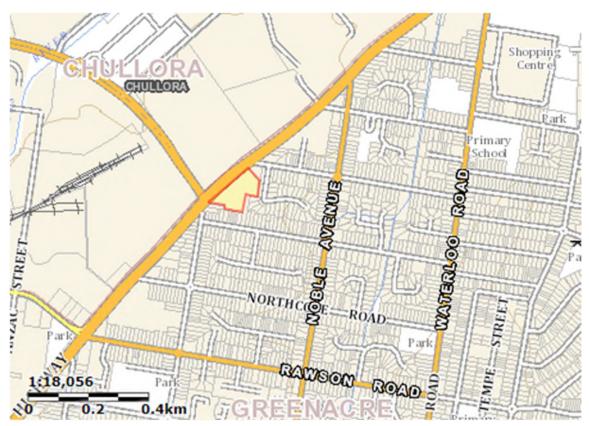
Appendix P – Important information about your environmental site report should also be read in conjunction with this report.

REFERENCES

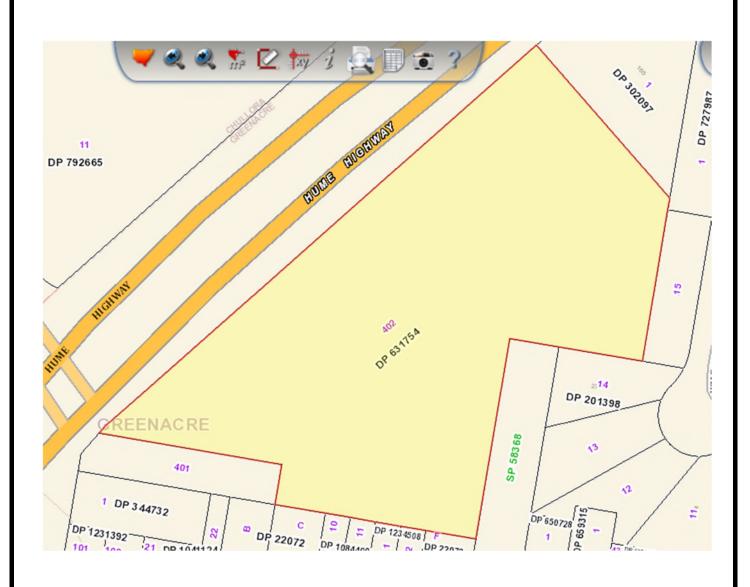
This report was prepared with reference to the following guiding documents:

- ANZECC National Water Quality Management Strategy "Australian Water Quality Guidelines for Fresh and Marine Waters", 1992.
- Department of Urban Affairs and Planning EPA (1998) "Managing Land Contamination Planning Guidelines SEPP 55 Remediation of Land".
- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1).
- NSW DEC, "Guidelines for the Assessment and Management of Groundwater Contamination" (March 2007).
- NSW DEC "Guidelines for the NSW Site Auditor Scheme" (2017, 3rd edition). NSW Environment Protection Authority, Sydney.
- NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste".
- NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" (2020). NSW Environment Protection Authority, Sydney.
- NSW EPA "Sampling Design Guidelines" (1995). NSW Environment Protection Authority, Sydney.


APPENDIX A


SITE PLANS

SITE LOCALITY


PROJECT DETAILS			
Project Title	Detailed Site Investigation		
Project No.	ES8338		
Client	Iris Capital Pty Ltd		
Site Address	167 Hume Hwy, Greenacre NSW		

DRAWING DETAILS			
Figure No.	1 Rev No.		0
Scale	As Shown	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

LOT & DEPOSITED PLAN

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital Pty Ltd
Site Address	167 Hume Hwy, Greenacre NSW

DRAWING DET	AILS		
Figure No.	2	Rev No.	0
Scale	1:1,128	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

SITE FEATURES

LEGEND

- 1. Brick building with metal roof used as a restaurant
- $2. \hspace{0.5cm} \hbox{Brick and concrete building with metal roof-used as a hotel/tavern} \\$
- ${\it 3.} \qquad {\it Two-storey brick and concrete building with metal roof-used as a hotel/tavern}$
- 4. Two-storey brick building with metal roof used as a motel
- 5. Brick building with metal roof used as an auto repair workshop
- 6. Bitumen sealed driveway and car park
- 7. Concrete sealed driveway and car park
- 8. Grass covered area
- 9. Metal container

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital Pty Ltd
Site Address	167 Hume Hwy, Greenacre NSW

DRAWING DET	AILS		
Figure No.	3	Rev No.	0
Scale	1:1,128	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

BOREHOLE LOCATIONS

LEGEND

Site Boundary

Borehole location

Groundwater Monitoring Well

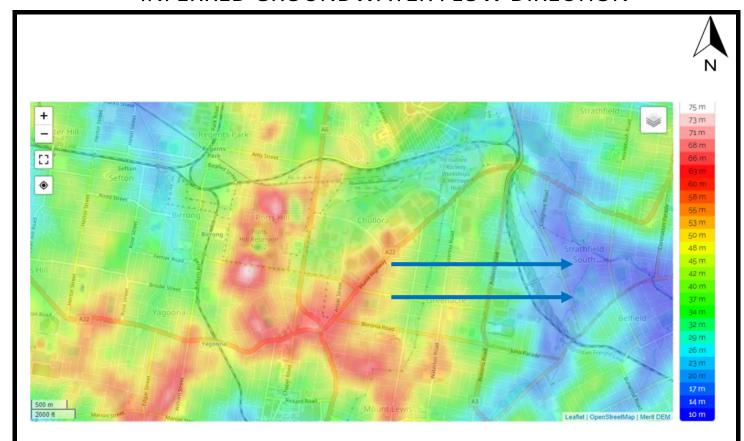
PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital Pty Ltd
Site Address	167 Hume Hwy, Greenacre NSW

DRAWING DET	AILS		
Figure No.	4	Rev No.	0
Scale	1:1,128	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

BOREHOLE LOCATIONS ON 1943 AERIAL

Site Boundary

Borehole location


Groundwater Monitoring Well

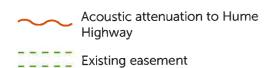
PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital Pty Ltd
Site Address	167 Hume Hwy, Greenacre NSW

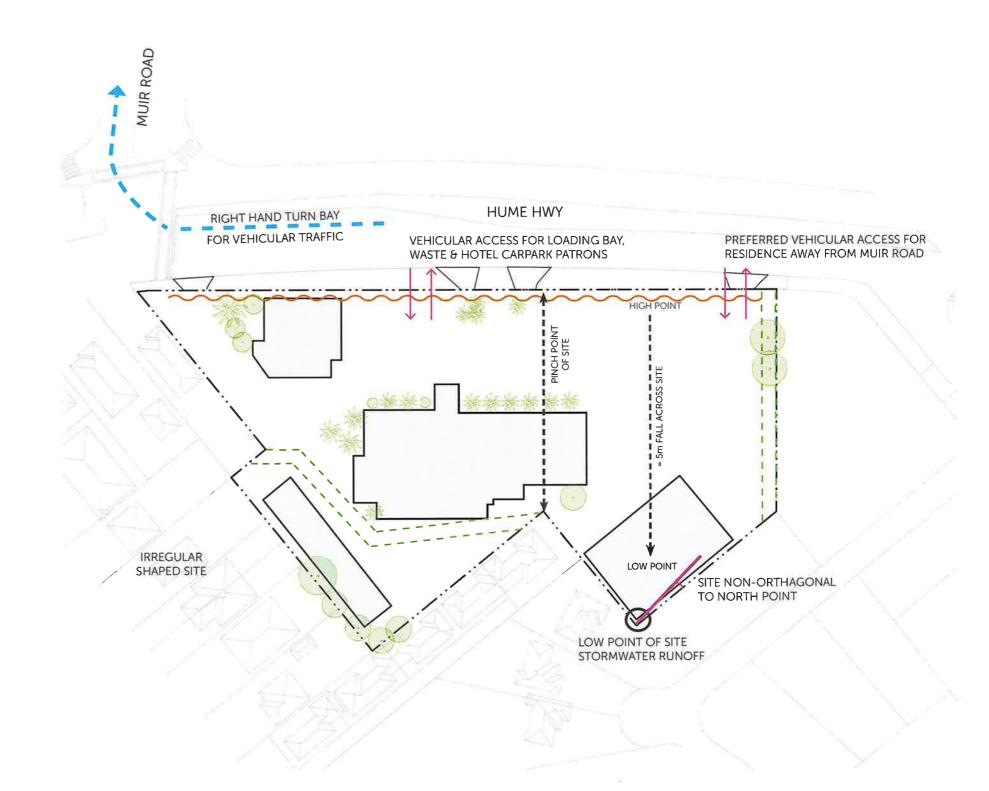
DRAWING DETAILS			
Figure No.	5	Rev No.	0
Scale	1:1,128	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

INFERRED GROUNDWATER FLOW DIRECTION

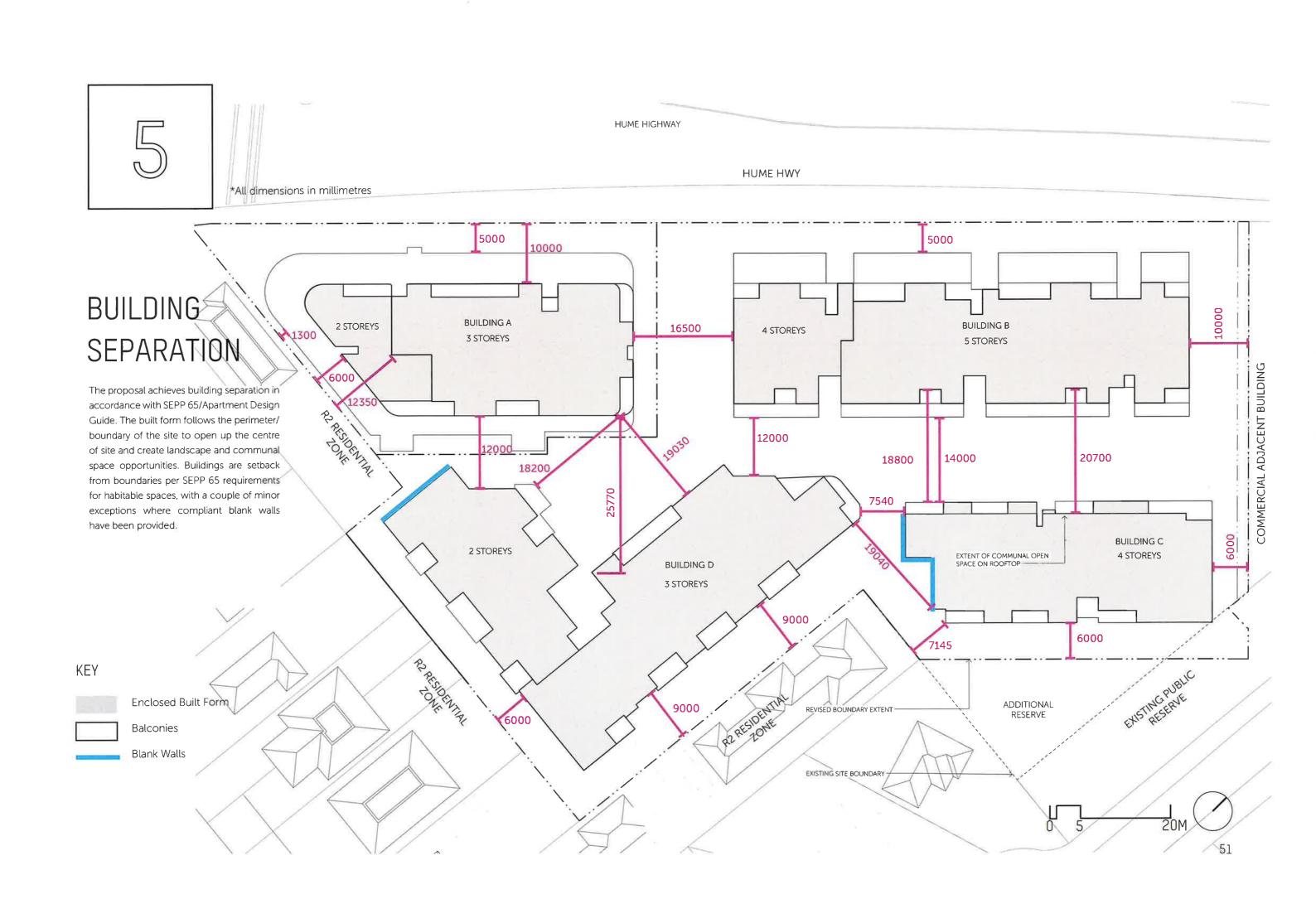
PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital Pty Ltd
Site Address	167 Hume Hwy, Greenacre NSW

DRAWING DET	AILS		
Figure No.	6	Rev No.	0
Scale	1:1,128	Size	A4
Drawn by	SBS	Date	30.08.2021
Approved by	MK	Date	30.08.2021

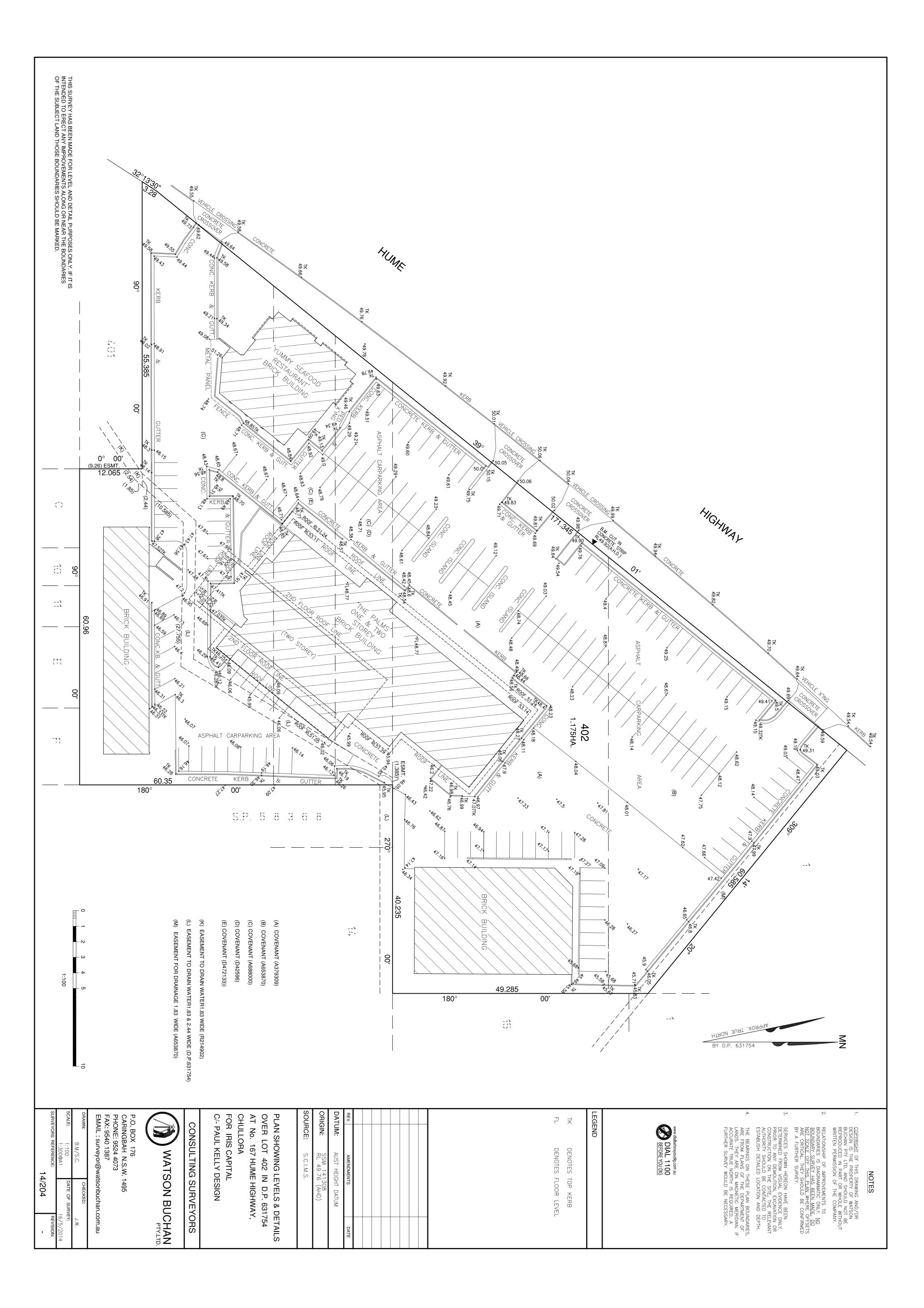

APPENDIX B



SITE CONSTRAINTS


- Irregular geometry of site present separation challenges when siting the buildings
- Approximate 5m slope to south-east corner of site.
- Existing stormwater easement to NE & S of site

KEY



APPENDIX C

SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

Client:	Iris Capital
Project:	DSI
Site Location:	167 Hume highway, Greencre NSW
Job No.:	ES8338
Photos Taken On:	31.08.2021
Photos Taken By:	SBS

Photograph Nº 1

View of: North eastern portion of the site occupied by single-storey brick building with metal roof utilized as an auto repair workshop.

Photograph Nº 4

View of: Eastern portion of the site showing the backside of the site occupied by single-storey brick building with metal roof utilized as an auto repair

Photograph N° 7

View of: Eastern portion of the site showing the backside of the site occupied by brick building a utilized as the main hotel building.

Photograph Nº 10

View of: South western corner of the site occupied by a single-storey brick building with metal roof utilized as a restaurant.

Photograph Nº 2

View of: North eastern portion of the site showing the auto repair workshop and vehicle parking lot.

Photograph Nº 5

View of: Eastern corner of the site showing the backside of the site occupied by single-storey brick building with metal roof utilized as an auto repair workshop.

Photograph Nº 8

View of: South eastern portion of the site occupied by a two-storey brick building with metal roof used as a Motel.

Photograph Nº 11

View of: North western corner of the site from Hume Highway showing the entrance to the site.

Photograph Nº 3

North eastern portion of the site showing the back side of the site occupied by single-storey brick building with metal roof utilized as an auto repair workshop.

Photograph Nº 6

View of: Eastern portion of the site showing the front of the auto repair workshop and metal container.

Photograph Nº 9

View of: South eastern portion of the site showing the southern side of the main hotel building and vehicle parking lot.

Photograph Nº 12

View of: Central western portion of the site showing the main hotel building and vehicle parking lot.

Photograph Nº 13

View of: South western portion of the site from Hume Highway, occupied by a single-storey brick building with metal roof utilized as a restaurant. Photo sourced from Google on 01.09.2021

Photograph Nº 14

View of: Central portion of the site showing the western side of the main hotel building and vehicle parking lot. Photo sourced from Google on 01.09.2021

APPENDIX D

LAND TITLE INFORMATION

Title Search

06/09/2021 05:15 PM

Client Reference: DI-ES8338

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH
FOLIO: 402/631754
SEARCH DATE TIME EDITION NO DATE
6/9/2021 5:16 PM 13 8/9/2018

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY WESTPAC BANKING CORPORATION.

LAND

LOT 402 IN DEPOSITED PLAN 631754
AT GREENACRE
LOCAL GOVERNMENT AREA CANTERBURY-BANKSTOWN
PARISH OF BANKSTOWN COUNTY OF CUMBERLAND
TITLE DIAGRAM DP631754

FIRST SCHEDULE

PALMS (CHULLORA) PTY LIMITED (T AI678347)

SECOND SCHEDULE (11 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 A379309 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 3 A653870 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 4 A653870 EASEMENT FOR DRAINAGE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 5 A688000 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 6 D42596 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 7 D472133 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 8 R214902 EASEMENT TO DRAIN WATER AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 9 DP631754 EASEMENT TO DRAIN WATER 1.83 AND 2.44 WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 10 AF75892 LEASE TO YUMMY HOLDINGS PTY LTD OF "YUMMY SEAFOOD

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

RESTAURANT", 167 HUME HIGHWAY, CHULLORA. EXPIRES: 30/6/2014

11 AI678348 MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

DI-ES8338

PRINTED ON 6/9/2021

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.
© Office of the Registrar-General 2021

Historical Search

06/09/2021 05:16 PM

Client Reference: DI-ES8338

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

6/9/2021 5:17PM

FOLIO: 402/631754

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 15061 FOL 54

Recorded Number Type of Instrument C.T. Issue

28/3/1988 TITLE AUTOMATION PROJECT LOT RECORDED

FOLIO NOT CREATED

22/9/1988 CONVERTED TO COMPUTER FOLIO FOLIO CREATED

CT NOT ISSUED

21/3/1989 Y136648 TRANSFER OF MORTGAGE EDITION 1

7/7/1992 E588548 DISCHARGE OF MORTGAGE

7/7/1992 E588549 MORTGAGE EDITION 2

3/12/1996 2661175 MORTGAGE EDITION 3

24/1/1997 2753711 LEASE EDITION 4

5/2/1999 5571044 DISCHARGE OF MORTGAGE EDITION 5

24/5/2000 6807622 DISCHARGE OF MORTGAGE

24/5/2000 6807623 TRANSFER

24/5/2000 6807624 MORTGAGE EDITION 6

28/5/2003 9649456 CAVEAT

13/11/2003 AA147410 WITHDRAWAL OF CAVEAT 13/11/2003 AA150569 DISCHARGE OF MORTGAGE 13/11/2003 AA147444 TRANSFER EDITION 7

21/11/2005 AB879438 CHANGE OF NAME

21/11/2005 AB879439 LEASE EDITION 8

8/5/2006 AC262195 TRANSFER EDITION 9

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

8/4/2009 AE585133 CHANGE OF NAME

8/4/2009 AE585134 LEASE EDITION 10

26/11/2009 AF75892 LEASE EDITION 11

16/12/2013 AI248004 REQUEST

24/6/2014 AI678347 TRANSFER

END OF PAGE 1 - CONTINUED OVER

DI-ES8338 PRINTED ON 6/9/2021

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

6/9/2021 5:17PM

FOLIO: 402/631754 PAGE 2

Recorded Number Type of Instrument C.T. Issue

24/6/2014 AI678348 MORTGAGE EDITION 12

12/2/2016 AJ924499 CAVEAT

8/4/2016 AK332482 ORDER OF COURT

12/4/2016 AK348190 ORDER OF COURT

9/5/2016 AK407217 ORDER OF COURT

20/5/2016 AK439325 REQUEST

13/7/2016 AK241747 APPLICATION FOR PREPARATION

OF LAPSING NOTICE

13/7/2016 AK528497 REQUEST

13/7/2016 AK580087 REQUEST

8/9/2018 AN695391 DEPARTMENTAL DEALING EDITION 13

CORD ISSUED

*** END OF SEARCH ***

DI-ES8338

PRINTED ON 6/9/2021

06/09/2021 05:21 PM

Req:R483349 /Doc:DL AI678347 /Rev:30-Jun-2014 /NSW LRS /Pgs:ALL /Prt:06-Sep-2021 17:19 /Seq:1 of 1 © Office of the Registrar-General /Src:DIRECTINFO /Ref:DI-ES8338

Form: 011 Licence: 01-

Licence: 01-05-025 Licensee: LEAP Legal Software Pty Limited **TRANSFER**

Firm name: LAS Lawyers & Consultants

New South Wales Real Property Act 1900 AI678347X

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any. Office of State Revenue STAMP DUTY Office of State Revenue use only NSW Treasury Client No: 111272656 2908 Duty: \$10.00 Asst details: 75 cn **TORRENS TITLE** 402/631754 Name, Address or DX, Telep Document (B) LODGED BY CODES Collection Box LLPN 123009 S DX 282 SYDNEY 426 686 Reference: TRANSFEROR Coles Group Property Developments Ltd ABN 72 004 428 326 CONSIDERATION The transferor acknowledges receipt of the consideration of \$21,500,000.00 and as regards **ESTATE** the abovementioned land transfers to the transferee an estate of fee simple. (E) **SHARE** TRANSFERRED Encumbrances (if applicable): (G) Palms (Chullora) Pty Limited ACN 167 341 666 (H) **TRANSFEREE** TENANCY: (I) DATE I certify that I am an eligible witness and that the transferor's Certified correct for the purposes of the Real Property **(J)** Act 1900 by the person(s) named below who signed attorney signed this dealing in my presence. this instrument pursuant to the power of attorney specified. Signature of attorney: Signature of witness: Attorney's name: . **Gregory Robert Chubb** TEVEN STRIANOS Signing on behalf of: Coles Group Property Name of witness: 800 Toorak Road Hawthorn East Victoria 3123 Developments Ltd Address of witness: An Australian Legal Practitioner (within the meaning of the Legal Profession Act 2004) Power of attorney-Book: 4618 -No.: 967 Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signatory's name: Dion Robert Manca Signatory's capacity: Solicitor for the Transferee (K) The transferee's solicitor certifies that the eNOS data relevant to this dealing has been submitted and stored under 627930 Full name: Nakita Louise Brown eNOS ID No. Signature:

06/09/2021 05:23 PM

Form: 01T 03-08-144 Licence: Licensee: Freehills

TRANSFEI

New South Wales

nal

AC262195P

Real Property Act 190 PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) auth required by this form for the establishment and maintenance of the Real Property Act Register-Section 95B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any 20-04-2006 0007789424-004 STAMP DUTY Office of State Revenue use only SECTION 281-ORIGINAL NO DUTY PAYABLE If appropriate, specify the part transferred (A) TORRENS TITLE See annexure A Codes Name, Address or DX and Telephone (B) LODGED BY Delivery **FREEHILLS** Box Level 32, MLC Centre Phone: (02) 9225 5000 19-29 Martin Place DX 361 Sydney 27C SYDNEY NSW 2000 Sheriff) Reference (optional): HJA:27C (C) TRANSFEROR THEO'S LIQUOR PTY LTD ACN 102 914 661 The transferor acknowledges receipt of the consideration of \$1.00 and as regards NEW SOUTH WALES DUTY (D) CONSIDERATION the land specified above transfers to the transferee an estate in feepsimple 06 0003389626-005 (E) ESTATE VENDOR DUTY SHARE (F) NO DUTY PAYABLE **TRANSFERRED**SECTION 462Y(5.281)..... 2.. Encumbrances (if applicable): 1. (G) (H) TRANSFEREE COLES MYER PROPERTY DEVELOPMENTS LIMITED ACN 004 428 326 TENANCY: (I) DATE Certified correct for the purposes of the Real I certify that the transferor, with whom I am personally acquainted or as to Property Act 1900 by the transferor. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferor: Signature of witness: Name of witness: See annexure A Address of witness: Certified correct for the purposes of the Real I certify that the transferee, with whom I am personally acquainted or as to Property Act 1900 by the transferee. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferee: Signature of witness: See annexure A Name of witness: If signed on the transferee's behalf by a solicitor,

> Page 1 of 3 number additional

licensed conveyancer or barrister, insert the

signatory's full name and capacity below:

pages sequentially

Address of witness:

ANNEXURE A TO TRANSFER

DATED:

THEO'S LIQUOR PTY LTD ACN 102 914 661 (TRANSFEROR)

COLES MYER PROPERTY DEVELOPMENTS LIMITED ACN 004 428 326

ITEM (A) TORRENS TITLE

√783/804337 ✓

~22/1/13225

26/1/13225

√27/1/13255

√29/1/13255

30/1/13225

∠45/1/13225

402/631754

14/2814, 2/A/2814, 4/A/2814, 5/A/2814

✓ Auto Consol 13700-6

Executed by Theo's Liquor Pty Ltd

by authority of its directors in the presence of.

Authority: s127 of the Corporations Act 2001

T.F. Bennett

Secretary/Director

ROBERT FREDERICK BENNETT Secretary

Name (please print)

Director

PETER ROBERT PATTERSON
Director

Name (please print)

Executed by

Coles Myer Property Developments Limited

by authority of its directors in the presence of.

Authority: s127 of the Corporations Act 2001

K.F. Bennett

Secretary/Director

ROBERT FREDERICK BENNETT Secretary

Name (please print)

Director

PETER ROBERT PATTERSON
Director

Name (please print)

06/09/2021 05:25 PM

Req:R483353 /Doc:DL AA147444 /Rev:17-Nov-2003 /NSW LRS /Pgs:ALL /Prt:06-Sep-2021 17:20 /Seq:1 of 2 © Office of the Registrar-General /Src:DIRECTINFO /Ref:DI-ES8338 Form: OIT nal TRANSFER Licence: 01-08-067 **New South Wales** Licensee: Midware Systems Real Property Act 19 **CLAYTON UTZ** *AA*147444N PRIVACY NOTE: this information is legally required and STAMP DUTY Office of State Revenue use only NEW SOUTH WALES DUTY 02-10-2003 0001418388-002 SECTION 18(2) DUTY \$ *************<u>7.00</u> (A) TORRENS TITLE If appropriate, specify the part transferred Folio Identifier 402/631754 (B) LODGED BY Delivery Name, Address or DX and Telephone CODE Box 27C Faeehills CLAYTON JJTZ DX-370 SYDNEY Tel: 9353 4000 185H Reference (optional): (3256667) AGSN2: 80355578 (Sheriff) (C) TRANSFEROR KARLAUN PTY LIMITED, ABN 74 080 572 407 (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 6,181,661.00 and as regards (E) ESTATE the land specified above transfers to the transferee an estate in fee simple. (F) SHARE **TRANSFERRED** (G)

Encumbrances (if applicable):

(H) TRANSFEREE

PALLAS NEWCO PTY LIMITED, ACN 102 914 661

TENANCY: (I)

14 / 05 / 03 (J) DATE

See Annexure "A" for Transferor execution clause.

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

Signature:

Signatory's name:

Signatory's capacity: Solicitor for the transferee

ANDREW GRACIME STEELE SOLICITOR

Annexure "A" to Transfer

Executed by Karlaun Pty Limited, ABN 74 080 572 407 by or in the presence of:

THEO KAREDIS

(Name of sole Director and Secretary in full) who states that he or she is the sole Director and sole company Secretary of Karlaun Pty Limited

Signature

06/09/2021 05:27 PM

Req:R483355 /Doc:DL 6807623 © Office of the Registrar-6	3 /Rev:30-May-20	000 /NSW LRS /Pgs:ALL /P:	rt:06-Sep-2021 17:20 /Seq:1 of 1
Form: 97-01TP	Selleral /SPC:DIF	_	6807623L
Licence: 27C/0042/95	2	TRANSFER	
		New South Wales Real Property Act 1900	
· · ·	Office of State R	evenue use only	
·		•	NEW COUTH BALES DUTY
			NEW SOUTH WALES DUTY 05-05-2000 0000298599-001
		<u> </u>	SECTION 18(2)
			OUTY \$ xxxxxxxxxxxxxxxx2.00
(A) LAND TRANSFERRED If appropriate, specify the	402 / 631754	([*]	
share transferred.	401 / 631754	/ *	
*	1017 05,2704		
(B) LODGED BY	LTO Box	Name, Address or DX and Te	lephone
(2)		,	
	290		₩S WBC
	217		
•	1		91508383 MS.
•		REFERENCE (15 character m	naximum):
(C) TRANSFEROR BREE	MILIM WINE COMP	ANV DTV 1 MATED (ACN 000	120.040\
(C) TRANSFEROR PRE	MICHI WINE COMP	ANY PTY. LIMITED (ACN 002	130 949)
•	he consideration of	\$8,500,000.00 and as regards the	e land specified above transfers to the transferee
an estate in fee simple.			
(E) Encumbrances (if applicable) 1. 2753711 (402/	631754) 2	3
· ·	····		
(F) TRANSFEREE T	LADIALIN DI	N LIBERTED (A ON 000 570 A	
TS (2712 L C		Y. LIMITED (ACN 080 572 4	107)
(s713 LG TW	A)		
(G) (Sheriff) TENANCY:		
			·
(H) We certify this dealing co	rrect for the purposes	of the Real Property Act 1900	DATE

-	y the transferor who	is personally known to me	
The common seal of Premium Wine Compa	ny Dty Limited	THE ANY PY	
is fixed to this document i		1860	
)	1 O Tomm	Inn
	1/2/	/ / Sau	
	V /	्रिं विश्व	
			(3) M//
Secretar	ry/Director	7 670	Director
D. W. /	MARCOUX		HJ NXCOC
Name (p	please print)		Name (please print)
Signed in my presence by	v the transferee who	is personally known to me	· · · · · · · · · · · · · · · · · · ·
	, are translated will	to personally known to me	
Water State of the		•	Λ
Signature	of Witness	· · · · · · · · · · · · · · · · · · ·	100
3.			Thomas Owen Jones
Name of Witness	(BLOCK LETTERS)		Signature of Transferee's solicitor
£			ned on the transferee's behalf by a solicitor
Address	of Witness		ensed conveyancer, show the signatory's full
		name	in block letters
FREEHILL			(A)

Page 1 of 1

FHPSYDCE\00369904.3

& Page

06/09/2021 05:19 PM

NEW SOUTH WALES

Vol. 5704 Fol.101

, A

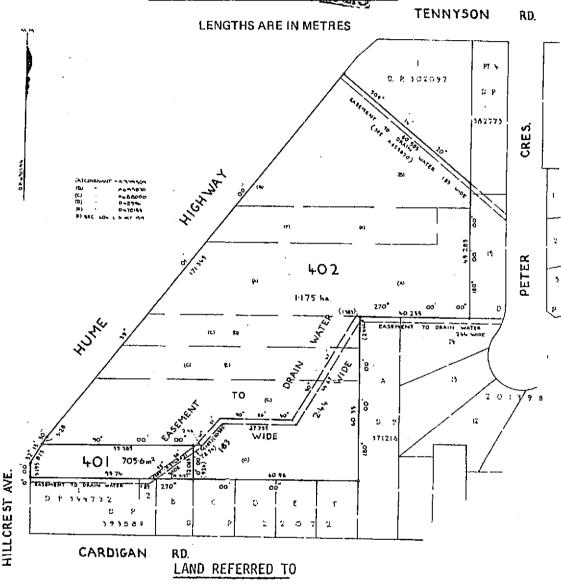
First Title Old System Prior Titles

Vol. 4085 Fol. Vol. 5709 Fol. 13 Vol. 6210 Fol.214 Vol. 5272 Fol.160 Vol. 5580 Fol.

Vol. 8410 Fol.118 Vol. 9944 Fol. 43

15061 Fol Vol......

> EDITION ISSUED


1983

I certify that the person named in the First Schedule is the registered proprietor of an estate in fee simple (or such other estate or interest as is set out below) in the land described subject to the recordings appearing in the Second Schedule and to the provisions of the Real Property Act, 1900

Registrar General,

PLAN SHOWING LOCATON OF LAND

Lot 402 in Deposited Plan 631754 at Greenacre in the City of Bankstown Parish of Bankstown and County of Cumberland.

FIRST SCHEDULE

-CECILIA-ELLEN WALL as to that part of the land above described formerly comprised in Certificates of title Volume 4085 Folio 8, Volume 5272 Folio 160, Volume 5580 Folio 4 Volume 5709 Folio 13, Volume 6210 Folio 274, Volume 8410 Folio 118 and Volume 9944 Folio 43 and ANTONI DOMAGALA and ELFRIEDE DOMAGALA as joint tenants as to that part of the land above described formerly comprised in Cortificate of Title volume 5704 Folio-101.

SECOND SCHEDULE

4RY 1. Reservations and conditions, if any, contained in the Crown Grant.

CY 2. A379309 P Covenant affecting the land shown so burdened in the plan hereon.

CY 3. A653870 P Covenant affecting the land shown so burdened in the plan hereon. EDB 4. A653870 P Easement for drainage affecting the part of the land above described shown so

burdened in the plan hereon.

CY5. A688000 P Covenant affecting the land shown so burdened in the plan hereon. CY6. D42596 P Covenant affecting the land shown so burdened in the plan hereon.

CY7. D472133 P Covenant affecting the land shown so burdened in the plan hereon.

8. The registered proprietors hold subject to section 604 Local Government Act, 1919 as regards the land as indicated in the plan hereon.

EW(SB)9. R214902P Easement to drain water affecting the part of the land above described shown so burdened in the plan hereon.

EN 10.DP631754f Easement to drain water 1.83 and 2.44 wide affecting the part of the land above described shown so bundered in December 2.45fdescribed shown so burdened in Deposited Plan 631754.

Caveat by Cecilia Fllen Wall affecting that part of the land above described formerly 11.T307019 comprised in Certificate of Title Wolfame 5704 Felio 101. Withdrawn T629666

RG 2/64

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

09/09/2021 02:20 PM

APPENDIX E

CURRENT AND HISTORICAL AERIAL PHOTOGRAPHS

HISTORICAL AERIAL PHOTOGRAPHS - 1943

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	1	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

PROJECT DETAILS		
Project Title	Detailed Site Investigation	
Project No.	ES8338	
Client	Iris Capital	
Site Address	167 Hume Highway, Greenacre NSW	

DRAWING DETAILS	i		
Figure No.	2	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

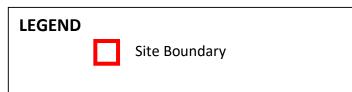
PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	3	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	4	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

LEGEN	D
	Site Boundary


PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	5	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	6	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS			
Figure No.	7	Rev No.	0
Scale	NTS	Size	A3
Drawn by	SR	Date	06.09.2021
Approved by	MK	Date	06.09.2021

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS									
Figure No.	8	Rev No.	0						
Scale	NTS	Size	A3						
Drawn by	SR	Date	06.09.2021						
Approved by	MK	Date	06.09.2021						

PROJECT DETAILS	
Project Title	Detailed Site Investigation
Project No.	ES8338
Client	Iris Capital
Site Address	167 Hume Highway, Greenacre NSW

DRAWING DETAILS								
Figure No.	9	Rev No.	0					
Scale	NTS	Size	A3					
Drawn by	SR	Date	06.09.2021					
Approved by	MK	Date	06.09.2021					
+								

APPENDIX F

NSW EPA RECORDS

Search results

Your search for:LGA: CANTERBURY-BANKSTOWN COUNCIL

Matched 59 notices relating to 17 sites. Search Again Refine Search

Suburb	Address	Site Name	Notices related to this site		
BASS HILL	862 Hume HIGHWAY	Woolworths Caltex Bass Hill	1 former		
CAMPSIE	403 Canterbury Road and 1 Una STREET	<u>Budget Petroleum and adjacent</u> <u>property</u>	1 current		
CAMPSIE	60 Charlotte STREET	Former Sunbeam factory	4 former		
CANTERBURY	13-19 Canterbury ROAD	Metro Petroleum Service Station	2 current		
CHESTER HILL	127 Orchard ROAD	Former Orica, Chester Hill	4 former		
EARLWOOD	3 Jackson PLACE	RTA Land	2 current		
HURLSTONE PARK	610 - 618 New Canterbury ROAD	<u>Former Speedway Petroleum Service</u> <u>Station</u>	3 former		
PADSTOW	55 Bryant STREET	Former Exide Battery Manufacturing & Recycling	2 current and 1 former		
PUNCHBOWL	42-44 Belmore ROAD	Punchbowl Laundry	3 current		
REVESBY	21 Marigold STREET	Mirotone Pty Ltd	3 former		
REVESBY	33-35 Violet STREET	Thetis Pty Ltd - Bituminous Products	3 current and 6 former		
VILLAWOOD	2A Birmingham AVENUE	Ettason Villawood Site	2 current		
VILLAWOOD	66 Christina ROAD	Former Electrical Component Manufacturer	1 current and 6 former		
VILLAWOOD	2 Christina ROAD	Former Orica Crop Care	2 current and 2 former		
VILLAWOOD	49 Miowera ROAD	Former Siemens/Westinghouse	9 former		
VILLAWOOD	110A Christina ROAD	Nepotian (Former Toll) Site	1 current		
YAGOONA	117-153 Rookwood ROAD	Galserv Galvanising Services	1 current		

Page 1 of 1

31 August 2021

For business and industry ^

For local government ^

Contact us

131 555 (tel:131555)

Online (https://yoursay.epa.nsw.gov.au/epa-website-feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

(https://au.linkedia environmentprotection-autlrity-

(http:sp:a/thyttpier/lowww/l/ty

Find us on

Search results

Your search for: Suburb: GREENACRE

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the <u>planning</u> <u>process</u>.

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

.. more search tips

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

For business and industry ^

31 August 2021

For local government ^

Contact us

131 555 (tel:131555)

Online (https://yoursay.epa.nsw.gov.au/epa-website-feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index)
Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer)
Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy)
Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

in (https://au.linkedinenvironmentprotection-

y autlority-(https://www.khy

Find us on

Number	Name	Location	Туре	Status	Issued date
1590662	AUSSIE SKIPS RECYCLING PTY LTD	13 Bellfrog Street, GREENACRE, NSW 2190	s.55 Licence Refusal	Issued	5-Jul-19
		-			
	AUSSIE SKIPS RECYCLING PTY LTD	13 Bellfrog Street, GREENACRE, NSW 2190	POEO licence	Issued	4-Mar-20
1601731	AUSSIE SKIPS RECYCLING PTY LTD	13 Bellfrog Street, GREENACRE, NSW 2190	Compliance Audit	Complete	16-Oct-20
	AUSSIE SKIPS RECYCLING PTY LTD BANKSTOWN CITY COUNCIL	13 Bellfrog Street, GREENACRE, NSW 2190 BANKSIA ROAD, GREENACRE, NSW 2190	s.58 Licence Variation POEO licence	Issued Surrendered	8-Jul-21 27-Apr-00
11520	BANKSTOWN CITY COUNCIL	1-3 Anzac Street, GREENACRE, NSW 2190	POEO licence	No longer in force	10-Oct-01
	BANKSTOWN CITY COUNCIL	BANKSIA ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	19-Oct-01
	BANKSTOWN CITY COUNCIL	1-3 Anzac Street, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	15-Jun-04
	BANKSTOWN CITY COUNCIL	BANKSIA ROAD, GREENACRE, NSW 2190	s.80 Surrender of a Licence	Issued	15-Feb-05
	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190		No longer in force	5-Jun-02
1018142	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	12-Jun-02
1018819	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	19-Sep-02
1024203	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	7-Feb-03
1033147	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	15-Dec-03
1034343	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	21-Apr-04
1046230	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	10-Jun-05
1053898	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	12-Dec-05
1068622	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	29-Mar-07
1098247	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	30-Mar-09
1103943	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	10-Jul-09
21429	BITUPAVE LTD	1-5 NORFOLK ROAD, GREENACRE, NSW 2190	POEO licence	Issued	8-Dec-20
	CLEANAWAY PTY LTD	44 CLAREMONT AVENUE, GREENACRE, NSW 2190	POEO licence	Issued	21-May-15
	CLEANAWAY PTY LTD	44 CLAREMONT AVENUE, GREENACRE, NSW 2190			
		44 CLAREMONT AVENUE, GREENACRE, NSW	s.58 Licence Variation	Issued	24-Aug-15
	CLEANAWAY PTY LTD	2190 44 CLAREMONT AVENUE, GREENACRE, NSW	Compliance Audit	Complete	17-May-18
1603077	CLEANAWAY PTY LTD	2190 35 Wentworth Street, GREENACRE, NSW	s.58 Licence Variation	Issued	7-Dec-20
20847	GREENACRE RECYCLING PTY LTD	2190 35 Wentworth Street, GREENACRE, NSW	POEO licence	Issued	3-Mar-17
3173524081	GREENACRE RECYCLING PTY LTD	2190 35 Wentworth Street, GREENACRE, NSW	Penalty Notice	Issued	11-Jan-18
1564759	GREENACRE RECYCLING PTY LTD	2190 35 Wentworth Street, GREENACRE, NSW	s.58 Licence Variation	Issued	7-Jun-18
1569832	GREENACRE RECYCLING PTY LTD	2190 35 Wentworth Street, GREENACRE, NSW	s.58 Licence Variation	Issued	28-Sep-18
1577847	GREENACRE RECYCLING PTY LTD	2190	s.58 Licence Variation	Issued	29-Mar-19
3173530169	GREENACRE RECYCLING PTY LTD	35 Wentworth Street, GREENACRE, NSW 2190	Penalty Notice	Issued	18-Mar-21
1500439	H. HASSARATI & CO PTY LTD	35 Wentworth Street, GREENACRE, NSW 2190	s.91 Clean Up Notice	Issued	30-Aug-11
1540511	H. HASSARATI & CO PTY LTD	35 Wentworth Street, GREENACRE, NSW 2190	s.91 Clean Up Notice	Issued	26-May-16
3085779850	H. HASSARATI & CO PTY LTD	35 Wentworth Street, GREENACRE, NSW 2190	Penalty Notice	Issued	15-Aug-16
	H. HASSARATI & CO PTY I TD	35 Wentworth Street, GREENACRE, NSW 2190	Penalty Notice	Issued	21-Oct-16
1550305	H. HASSARATI & CO PTY LTD	35 Wentworth Street, GREENACRE, NSW 2190	s.110 Revocation of Clean Up Notice	Issued	17-Mar-17
		35 Wentworth Street, GREENACRE, NSW 2190			30-Mar-17
	H. HASSARATI & CO PTY LTD	35 Wentworth Street, GREENACRE, NSW	s.58 Licence Variation	Issued	
	H. HASSARATI & CO PTY LTD	2190 67 - 77 Beresford Avenue, GREENACRE, NSW	s.58 Licence Variation	Issued	28-Aug-17
	RENEW RUBBER PTY LIMITED	2190 67 - 77 Beresford Avenue, GREENACRE, NSW	POEO licence	Revoked	2-Apr-15
1532527	RENEW RUBBER PTY LIMITED	2190 67 - 77 Beresford Avenue, GREENACRE, NSW	s.58 Licence Variation	Issued	25-Aug-15
3085779236	RENEW RUBBER PTY LIMITED	2190 67 - 77 Beresford Avenue, GREENACRE, NSW	Penalty Notice	Issued	1-Jun-16
1543246	RENEW RUBBER PTY LIMITED VEOLIA ENVIRONMENTAL SERVICES	2190	s.79 Revocation of a Licence	Issued	26-Aug-16
3070	(AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	POEO licence	Issued	31-May-00
1025262	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	31-Mar-03
1037674	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	11-Nov-04
1096010	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	22-Dec-08
1114401	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	1-Dec-10
	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	13-Dec-11
	VEOLIA ENVIRONMENTAL SERVICES (AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	s.58 Licence Variation	Issued	3-Sep-15
	VEOLIA ENVIRONMENTAL SERVICES				
1564898	(AUSTRALIA) PTY LTD	75 ANZAC STREET, GREENACRE, NSW 2190	Compliance Audit	Complete	15-May-18

APPENDIX G

SECTION 149 CERTIFICATES

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Info Track DX 578 SYDNEY

CERT	TFIC	ATE	DET	AILS
-------------	-------------	-----	-----	------

NUMBER 20171596 **DATE** 26-Apr-2017

RECEIPT AND REFERENCE DETAILS

FEE \$220.00

RECEIPT NUMBER 3585687 RECEIPT DATE 26-Apr-2017

REFERENCE 2016168:30637

PROPERTY DESCRIPTION

PROPERTY 167 Hume Highway, GREENACRE NSW 2190

TITLE Lot 402 DP 631754

PARISH Bankstown COUNTY CUMBERLAND

PLANNING INSTRUMENTS

In accordance with Section 149(2) and at the date of this certificate the following Environmental Planning Instruments apply to the land.

Bankstown Local Environmental Plan 2015 Gazetted on 05-Mar-2015

LAND ZONING

B6 Enterprise Corridor

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

SECTION 149(2) DETAILS

In accordance with section 149(2) of the Environmental Planning and Assessment Act 1979 (as amended) and at the date of this certificate, the following prescribed matters relate to the land.

1. NAMES OF RELEVANT PLANNING INSTRUMENTS AND DCPs

Affected by Bankstown Local Environmental Plan 2015 Amendments and Planning Proposals in respect of general information as detailed in Appendix 1.

Affected by State Environmental Planning Policies (SEPP's), Proposed State Environmental Planning Policies and Deemed State Environmental Planning Policies as detailed in Appendix 2.

Affected by Bankstown Development Control Plan 2015 (refer to Appendix 3 which lists the contents chapters within the DCP).

2. ZONING AND LAND USE UNDER RELEVANT LEPS

Unless specified otherwise in this section of the certificate, the land does not include or comprise critical habitat, is not in a conservation area and has no environmental heritage item on the land.

The purposes for which the plan or instrument provides that development may be carried out within the zone without the need for development consent are specified in clause 3.1 of the LEP 2015 plan and the land use table as detailed in Appendix 4. Reference should be made to the LEP 2015 plan as a whole for details.

The purposes for which the plan or instrument provides that development may not be carried out within the zone except with development consent are specified in Part 2 and clause 3.2 of the LEP 2015 plan and detailed in Appendix 4. Reference should be made to the LEP 2015 plan as a whole for details.

The purposes for which the plan or instrument provides that development is prohibited within the zone are specified in Part 2 and clauses 4.1A-2(c), 4.1B-2(4), 6.6 and 6.8 of the LEP 2015 plan and detailed in Appendix 4. Reference should be made to the LEP 2015 plan as a whole for details.

2A. ZONING AND LAND USE UNDER STATE ENVIRONMENTAL PLANNING POLICY (SYDNEY REGION GROWTH CENTRES) 2006

Unless specified otherwise in this section of the certificate, the land is not within any zone or land use under a Precinct Plan, a proposed Precinct Plan or Part 3 of State Environmental Planning Policy (Sydney Region Growth Centres) 2006.

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

3. COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" <u>may not</u> be carried out on the land.

The land is non complying because the land has been identified by an environmental planning instrument as being either one of the following zones:-

- B5 Business Development, B6 Enterprise Corridor, B7 Business Park
- IN1 General Industrial, IN2 Light Industrial
- SP1 Special Activities, SP2 Infrastructure
- RE1 Public Recreation, RE2 Private Recreation
- E1 National Park and Nature Reserves
- Land unzoned under LEP 2015.....refer to the Land Zoning of this certificate on page 1.

OR

The land is affected by one or more of the following 4 exemptions:-

- A Heritage item refer to clause 2 of this certificate,
- Land in the 25 or higher ANEF contour refer to clause 7 of this certificate,

(Unless the development is only for the erection of ancillary development, the alteration of or an addition to ancillary development or the alteration of a dwelling house)

- Acid sulfate soils class 1 or 2 refer to clause 7 of this certificate,
- Land in a vegetated buffer area refer to clause 7 of this certificate.

Note: If the land has been rendered non complying due to an exemption listed above, you are advised to check with Council for the extent of the exemption. The Code may render the land complying for any land which is outside the extent of the exemption. Reference should be made to the "Planning Maps" on Council's website www.bankstown.nsw.gov.au which identifies the land exemptions.

Housing Alterations Code

Complying development under the Housing Alterations Code within the provisions of "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" <u>may not</u> be carried out on the land. The land is non complying because the land has been identified by an environmental planning instrument as being either one of the following zones:-

- B5 Business Development, B6 Enterprise Corridor, B7 Business Park
- IN1 General Industrial, IN2 Light Industrial
- SP1 Special Activities, SP2 Infrastructure
- RE1 Public Recreation, RE2 Private Recreation
- E1 National Park and Nature Reserves
- Land unzoned under LEP 2015.....refer to the Land Zoning of this certificate on page 1.

OR

The land is affected by the following exemption:-

A Heritage itemrefer to clause 2 of this certificate.

Note: If the land has been rendered non complying due to an exemption listed above, you are advised to check with Council for the extent of the exemption. The Code may render the land complying for any land which is outside the extent of the exemption. Reference should be made to the "Planning Maps" on Council's website www.bankstown.nsw.gov.au which identifies the land exemptions.

Subdivisions Code (strata subdivision)

Complying development under the Subdivisions Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" **may** be carried out on the land.

Rural Housing Code

Complying development under the Rural Housing Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" may not be carried out on the land.

The land is non complying because the land has been identified by an environmental planning instrument as being either one of the following zones:-

- R2 Low Density Residential, R3 Medium Density Residential, R4 High Density Residential
- B1 Neighbourhood Centre, B2 Local Centre, B4 Mixed Use, B5 Business Development, B6 Enterprise Corridor, B7 Business Park
- IN1 General Industrial, IN2 Light Industrial
- SP1 Special Activities, SP2 Infrastructure
- RE1 Public Recreation, RE2 Private Recreation
- E1 National Park and Nature Reserves
- Land unzoned under LEP 2015.....refer to the Land Zoning of this certificate on page 1.

ABN 45 985 891 846 Branch 004 Canterbury-Bankstown Council PO Box 8 Bankstown NSW 1885 council@cbcity.nsw.gov.au

PLANNING CERTIFICATE

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 OR

The land is affected by one or more of the following 4 exemptions:-

- A Heritage item refer to clause 2 of this certificate,
- Land in the 25 or higher ANEF contour.... refer to clause 7 of this certificate, (Unless the development is only for the erection of ancillary development, the alteration of or an addition to ancillary development or the alteration of a dwelling house)
- Acid sulfate soils class 1 or 2 refer to clause 7 of this certificate,
- Land in a vegetated buffer area refer to clause 7 of this certificate,

Note: If the land has been rendered non complying due to an exemption listed above, you are advised to check with Council for the extent of the exemption. The Code may render the land complying for any land which is outside the extent of the exemption. Reference should be made to the "Planning Maps" on Council's website www.bankstown.nsw.gov.au which identifies the land exemptions.

General Development Code

Complying development under the General Development Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" may be carried out on the land.

Demolition Code

Complying development under the Demolition Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" may be carried out on the land.

Fire Safety Code

Complying development under the Fire Safety Code within "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" may be carried out on the land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code within the provisions of "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" may not be carried out on the land

The land is non complying because the land has been identified by an environmental planning instrument as being either one of the following zones:-

- RU4 Primary Production Small Lots
- R2 Low Density Residential, R3 Medium Density Residential, R4 High Density Residential
- SP1 Special Activities, SP2 Infrastructure
- RE1 Public Recreation, RE2 Private Recreation
- E1 National Park and Nature Reserves
- Land unzoned under LEP 2015.....refer to the Land Zoning of this certificate on page 1.

OR

The land is affected by one of the following exemptions:-

- A Heritage item refer to clause 2 of this certificate.
- A Flood Control Lotrefer to clause 7A of this certificate.

Note: If the land has been rendered non complying due to an exemption listed above, you are advised to check with Council for the extent of the exemption. The Code may render the land complying for any land which is outside the extent of the exemption. Reference should be made to the "Planning Maps" on Council's website www.bankstown.nsw.gov.au which identifies the land exemptions.

Further: Although the land is non complying for Subdivisions 9 & 10, the Code may render the land complying for Subdivisions 1-8 and 11-12. Reference should be made to "Part 5 – Commercial and Industrial Alterations Code" of the SEPP for details.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code within the provisions of "State Environmental Planning Policy (Exempt and Complying Development Codes) 2008" <u>may</u> be carried out on the land.

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

4. COASTAL PROTECTION

Unless specified otherwise in this section of the certificate, the land is not affected by the operation of Section 38 or 39 of the Coastal Protection Act 1979.

4A. CERTAIN INFORMATION RELATING TO BEACHES AND COASTS

Unless specified otherwise in this section of the certificate, the land is not subject to an order under Part 4D of the Coastal Protection Act 1979 in relation to temporary coastal protection works (or on public land adjacent to the land) and, Council has not been notified under Section 55X of the Coastal Protection Act 1979 that temporary coastal protection works have been placed on the land (or on public land adjacent to the land).

4B. ANNUAL CHARGES UNDER LOCAL GOVERNMENT ACT 1993 FOR COASTAL PROTECTION SERVICES THAT RELATE TO EXISTING COASTAL PROTECTION WORKS

Unless specified otherwise in this section of the certificate, the owner (or any previous owner) has not consented in writing that the land is subject to annual charges under Section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

5. MINE SUBSIDENCE

Not affected by Section 15 of the Mine Subsidence Compensation Act 1961, proclaiming land to be a mine subsidence district.

6. ROAD WIDENING AND REALIGNMENT

Not affected by any road widening or road realignment under (1) Division 2 of Part 3 of the Roads Act 1993; or (2) any Environmental Planning Instrument; or (3) any resolution of Council. However, the property fronts an existing or proposed arterial/main road. Please check with the Roads and Maritime Services for possible effects.

7. COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

Unless specified otherwise in this section of the certificate, the land is not affected by policies adopted by Council or by any other authority (that has notified Council of its adoption) that restricts development of the land. For bush fire prone land refer to section 11. For flood prone land refer to section 7A.

Affected by a resolution of Council adopting a policy concerning the management of contaminated land. That policy applies to all land in the City of Canterbury-Bankstown and will restrict development of the land if the circumstances set out in the policy prevail. A copy of the policy is available on Council's website at www.bankstown.nsw.gov.au or from the Customer Service Area.

Note: Additional information regarding contaminated land matters for this property <u>may</u> also be provided on part 5 of this section 149 planning certificate. For further information contact Council on 9707 9000.

> CANTERBURY > BANKSTOWN

ABN 45 985 891 846 Branch 004 Canterbury-Bankstown Council PO Box 8 Bankstown NSW 1885 council@cbcity.nsw.gov.au

PLANNING CERTIFICATE

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

7A, FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Unless specified otherwise in this section of the certificate, the land is not affected by flood related development controls.

A Flood control lot.

The property is affected by a policy known as Bankstown Development Control Plan 2015, Part B12 - Flood Risk Management and clause 6.3 – Flood planning of the LEP 2015, by reference to the Greenacre Park Catchment Flood Modelling Report (December 2009) (a copy of which is available for inspection at Council's Offices), which categorises land affected by the 100 year flood into two flood risk precincts:

- High flood risk precinct Land below the 100 year flood that is either subject to a high hydraulic hazard
 or where there are significant evacuation difficulties; and
- Medium flood risk precinct Land below the 100 year flood that is not subject to a high hydraulic hazard and where there are no evacuation difficulties.

Bankstown Development Control Plan 2015 includes flood related development controls for properties based on the relevant flood risk precinct. Contact Council for information about the flood risk precinct applying to this property.

8. LAND RESERVED FOR ACQUISITION

Not affected by either an Environmental Planning Instrument or proposed Environmental Planning Instrument referred to in clause 5.1 providing for the acquisition of the land or part of the land by a public authority, as referred to in Section 27 of the Environmental Planning & Assessment Act. Reference should be made to the LEP 2015 plan as a whole for details.

9. CONTRIBUTION PLANS

Affected by Bankstown City Council Section 94A Development Contributions Plan 2009 which allows Council to impose a levy on development within the City of Canterbury-Bankstown in accordance with Directions issued by the Minister for Planning. The levy will be spent on the provision of public works and infrastructure. Date of commencement 8th June 2009. For further details on the plan contact Council on 9707 9000 or visit Council's website – www.bankstown.nsw.gov.au

9A. BIODIVERSITY CERTIFIED LAND

Unless specified otherwise in this section of the certificate, the land is not biodiversity certified land within the meaning of Part 7AA of the Threatened Species Conservation Act 1995.

10. BIOBANKING AGREEMENTS

Unless specified otherwise in this section of the certificate, the land is not subject to a Biobanking Agreement under Part 7A of the Threatened Species Conservation Act 1995, made by the Department of Environment, Climate Change and Water that has notified Council of the existence of the agreement.

11. BUSHFIRE PRONE LAND

Unless specified otherwise in this section of the certificate, the land is not bushfire prone.

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

12. PROPERTY VEGETATION PLANS

Unless specified otherwise in this section of the certificate, the land is not subject to a Property Vegetation Plan under the Native Vegetation Act 2003, as approved by any other authority that has notified Council of the existence of the plan.

13. ORDERS UNDER TREES (DISPUTES BETWEEN NEIGHBOURS) ACT 2006

Unless specified otherwise in this section of the certificate, the land is not subject to a Tree Order under the Trees (Disputes Between Neighbours) Act 2006, made by an authority that has notified Council of the existence of the order.

14. DIRECTIONS UNDER PART 3A

Unless specified otherwise in this section of the certificate, the land is not subject to a Direction by the Minister under section 75P (2) (c1) of the Act that a provision of an EPI does not have an effect.

15. CONDITIONS AFFECTING SENIORS HOUSING

Unless specified otherwise in this section of the certificate, the land is not subject to a development application granted after 12.10.2007 under SEPP (Housing for Seniors or People with a Disability) 2004 setting out the terms of any conditions imposed under clause 18(2) or a current site compatibility certificate issued under clause 25 of the SEPP.

16. SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

Unless specified otherwise in this section of the certificate, the land is not subject to a development application under clause 19 of SEPP (Infrastructure) 2007 where a valid site compatibility certificate has been issued.

17. SITE COMPATIBILITY CERTIFICATES & CONDITIONS FOR AFFORDABLE RENTAL HOUSING

Unless specified otherwise in this section of the certificate, the land is not subject to a development application under SEPP (Affordable Rental Housing) 2009 where a valid site compatibility certificate and conditions have been issued.

18. PAPER SUBDIVISION INFORMATION

Unless specified otherwise in this section of the certificate, the land is not subject to a paper subdivision or subdivision order.

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

19. SITE VERIFICATION CERTIFICATES

Unless specified otherwise in this section of the certificate, the land is not subject to a current site verification certificate of which the Council is aware in respect to Division 3 of Part 4AA of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. LOOSE-FILL ASBESTOS INSULATION

A residential dwelling erected on this land has not been identified in the Loose–Fill Asbestos Insulation Register as containing loose–fill ceiling insulation. Contact NSW Fair Trading for more information.

MATTERS ARISING UNDER THE CONTAMINATED LAND MANAGEMENT ACT, 1997

Unless specified otherwise in this section of the certificate, there are no matters arising under Section 59(2) of the Contaminated Land Management Act 1997.

MATTERS ARISING UNDER THE NATION BUILDING AND JOBS PLAN (STATE INFRASTRUCTURE DELIVERY) ACT, 2009

Unless specified otherwise in this section of the certificate, there are no matters arising under Section 26 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009.

This completes the prescribed matters for the certificate under section 149(2) of the Environmental Planning and Assessment Act 1979, as amended. While this certificate indicates the zoning of the land, it is suggested that the relevant Planning Instrument be inspected on Council's website under Development – Planning Maps or at Council's Customer Service Centre to provide an overall view of the area and the site's surrounding zonings.

Please contact Council's general enquiries number listed at the bottom of this sheet for further information about any matter referred to in this certificate.

Melissa Ratkun

M. Cather

Manager Information Management

ABN 45 985 891 846 Branch 004 Canterbury-Bankstown Council PO Box 8 Bankstown NSW 1885 council@cbcity.nsw.gov.au

PLANNING CERTIFICATE

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Appendix 1

Bankstown Local Environmental Plan 2015 Amendments & Planning Proposals.

(relating to general information only which may affect part or the whole of the City)

Note: As of 1 July 2009, Draft LEP's have been replaced with "Planning Proposals". A planning proposal is a document that explains the intended effect of, and justification for, a proposed LEP.

Nil

ABN 45 985 891 846 Branch 004 Canterbury-Bankstown Council PO Box 8 Bankstown NSW 1885 council@cbcity.nsw.gov.au

PLANNING CERTIFICATE

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 Appendix 2

State Environmental Planning Policies (SEPP's), Proposed SEPP's and Deemed SEPP's

Note: The names of the relevant instrument's plus their gazettal dates are listed below. For further details please refer to the Department of Planning website www.planning.nsw.gov.au under the heading "Planning System – Legislation and Planning Instruments".

SEPP No.19 - Bushland in Urban Areas, gazetted 24.10.1986

SEPP No.21 - Caravan Parks, gazetted 24.4.1992

SEPP No.30 - Intensive Agriculture, gazetted 8.12.1989

SEPP No.32 - Urban Consolidation (Redevelopment of Urban Land), gazetted 15.11.1991

SEPP No.33 - Hazardous and Offensive Development, gazetted 13.3.1992

SEPP No.50 - Canal Estate Development, gazetted 10.11.1997

SEPP No.55 - Remediation of Land, gazetted 28.8.1998

SEPP No.62 - Sustainable Aquaculture, gazetted 25.8.2000

SEPP No.64 - Advertising and Signage, gazetted 16.3.2001

SEPP No.65 - Design Quality of Residential Flat Development, gazetted 26.7.2002

SEPP – (Housing for Seniors or People with a Disability) 2004, gazetted 31.3.2004

SEPP - (Building Sustainability Index: BASIX) 2004, gazetted 25.6.2004

SEPP – (Major Development) 2005, gazetted 1.8.2005

SEPP - (Mining, Petroleum Production and Extractive Industries) 2007, gazetted 16.2.2007

SEPP – (Miscellaneous Consent Provisions) 2007, gazetted 26.10.2007

SEPP - (Infrastructure) 2007, gazetted 21.12.2007

SEPP – (Exempt and Complying Development Codes) 2008, gazetted 12.12.2008

SEPP – (Affordable Rental Housing) 2009, gazetted 31.7.2009

SEPP – (Sydney Drinking Water Catchment) 2011, gazetted 21.1.2011

PROPOSED SEPP - Competition SEPP, 27.7.2010

Note: As of 1 July 2009, regional environmental plans (REPs) are no longer part of the hierarchy of environmental planning instruments in NSW. The removal of the REP layer is intended to simplify the State's planning system. All existing REPs (listed below) are now deemed State environmental planning policies (SEPPs).

Deemed SEPP – Greater Metropolitan Regional Environmental Plan No. 2 – Georges River Catchment, gazetted 5.2.1999

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 Appendix 3

Bankstown Development Control Plan 2015

DATE OF COMMENCEMENT – 13th May 2015

The following is a list of the contents within Bankstown Development Control Plan 2015. If further information is required please contact Council on 9707 9000.

INTRODU	INTRODUCTION						
PART A	PRECINCT CONTROLS						
A1	Centres						
A2	Corridors						
A3	Key infill development sites						
PART B	GENERAL CONTROLS						
B1	Residential development						
B2	Commercial centres						
B3	Industrial precincts						
B4	Sustainable development						
B5	Parking						
B6	Child care centres						
B7	Educational establishments						
B8	Places of public worship						
B9	Sex services premises						
B10	Telecommunications facilities						
B11	Tree preservation order						
B12	Flood risk management						

<u>Please note:</u> Council may from time to time exhibit draft changes to the development control plan that may affect your land. To find out more, please contact Council on 9707 9000 or view Council's website and refer to the Development Control Plan - www.bankstown.nsw.gov.au

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Appendix 4

Land Use Table

Note. A type of development referred to in the Land Use Table is a reference to that type of development only to the extent it is not regulated by an applicable State environmental planning policy. The following State environmental planning policies in particular may be relevant to development on land to which this Plan applies:

State Environmental Planning Policy (Affordable Rental Housing) 2009 (including provision for secondary dwellings)

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Infrastructure) 2007 (relating to public facilities such as those for air transport, correction, education, electricity generation, health services, ports, railways, roads, waste management and water supply systems)

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Rural Lands) 2008

State Environmental Planning Policy (Rufal Lands) 2006
State Environmental Planning Policy No 33—Hazardous and Offensive Development
State Environmental Planning Policy No 50—Canal Estate Development
State Environmental Planning Policy No 62—Sustainable Aquaculture
State Environmental Planning Policy No 64—Advertising and Signage

Primary Production Small Lots Zone RU4

Permitted without consent

Home occupations

Permitted with consent

Agriculture; Animal boarding or training establishments; Building identification signs; Business identification signs; Dwelling houses; Environmental facilities; Environmental protection works; Extensive agriculture; Farm buildings; Flood mitigation works; Intensive plant agriculture; Kiosks; Plant nurseries; Recreation areas; Recreation facilities (indoor); Recreation facilities (outdoor); Roads; Roadside stalls; Water supply systems

Prohibited

Any development not specified in item 2 or 3

Zone R2 Low Density Residential

Permitted without consent

Home occupations

Permitted with consent

Bed and breakfast accommodation; Boarding houses; Boat sheds; Building identification signs; Business identification signs; Car parks; Child care centres; Community facilities; Dual occupancies; Dwelling houses; Emergency services facilities; Environmental facilities; Environmental protection works; Exhibition homes; Flood mitigation works; Group homes; Health consulting rooms; Home-based child care; Hospitals; Information and education facilities; Jetties; Multi dwelling housing; Places of public worship; Public administration buildings; Recreation areas; Respite day care centres; Roads; Secondary dwellings; Semi-detached dwellings; Seniors housing; Water recreation structures; Water supply systems

Prohibited

Any development not specified in item 2 or 3

Medium Density Residential Zone R3

Permitted without consent

Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Building identification signs; Business identification signs; Car parks; Child care centres; Community facilities; Dwelling houses; Emergency services facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Group homes; Information and education facilities; Multi dwelling housing; Neighbourhood shops; Places of public worship; Public administration buildings; Recreation areas; Respite day care centres; Roads; Secondary dwellings; Seniors housing; Water supply systems

Prohibited

Any development not specified in item 2 or 3

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Zone R4 High Density Residential

Permitted without consent

Nil

Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Building identification signs; Business identification signs; Car parks; Child care centres; Community facilities; Dwelling houses; Emergency services facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Information and education facilities; Multi dwelling housing; Neighbourhood shops; Places of public worship; Public administration buildings; Recreation areas; Residential flat buildings; Respite day care centres; Roads; Secondary dwellings; Seniors housing; Serviced apartments; Shop top housing; Water supply systems

Prohibited

Any development not specified in item 2 or 3

Zone B1 Neighbourhood Centre

Permitted without consent

Nil

Permitted with consent

Boarding houses; Building identification signs; Bulky goods premises; Business identification signs; Business premises; Car parks; Child care centres; Community facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Garden centres; Hardware and building supplies; Health services facilities; Information and education facilities; Kiosks; Landscaping material supplies; Markets; Medical centres; Neighbourhood shops; Office premises; Places of public worship; Plant nurseries; Public administration buildings; Recreation areas; Recreation facilities (indoor); Recreation facilities (outdoor); Registered clubs; Research stations; Residential flat buildings; Respite day care centres; Restaurants or cafes; Roads; Seniors housing; Service stations; Shop top housing; Shops; Take away food and drink premises; Timber yards; Tourist and visitor accommodation; Vehicle repair stations; Vehicle sales or hire premises; Veterinary hospitals; Water supply systems

Prohibited

Any development not specified in item 2 or 3

Zone B2 Local Centre

Permitted without consent

Nil

Permitted with consent

Boarding houses; Building identification signs; Business identification signs; Child care centres; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Function centres; Information and education facilities; Medical centres; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Residential flat buildings; Respite day care centres; Restricted premises; Roads; Seniors housing; Service stations; Shop top housing; Tourist and visitor accommodation; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Residential accommodation; Rural industries; Sewage treatment plants; Sex services premises; Signage; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Waste or resource management facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Zone B4 Mixed Use

Permitted without consent

Nil

Permitted with consent

Boarding houses; Building identification signs; Business identification signs; Child care centres; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Function centres; Hotel or motel accommodation; Information and education facilities; Medical centres; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Residential flat buildings; Respite day care centres; Restricted premises; Roads; Seniors housing; Shop top housing; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Residential accommodation; Resource recovery facilities; Rural industries; Sewage treatment plants; Sex services premises; Signage; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Warehouse and distribution centres; Waste disposal facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

Zone B5 Business Development

Permitted without consent

Nii

Permitted with consent

Building identification signs; Bulky goods premises; Business identification signs; Business premises; Child care centres; Food and drink premises; Garden centres; Hardware and building supplies; Hotel or motel accommodation; Kiosks; Landscaping material supplies; Markets; Neighbourhood shops; Office premises; Passenger transport facilities; Plant nurseries; Respite day care centres; Roads; Serviced apartments; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Residential accommodation; Resource recovery facilities; Restricted premises; Rural industries; Sewage treatment plants; Sex services premises; Signage; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Waste disposal facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

Zone B6 Enterprise Corridor

Permitted without consent

Nil

Permitted with consent

Building identification signs; Bulky goods premises; Business identification signs; Business premises; Community facilities; Food and drink premises; Garden centres; Hardware and building supplies; Hotel or motel accommodation; Kiosks; Landscaping material supplies; Light industries; Markets; Multi dwelling housing; Neighbourhood shops; Office premises; Passenger transport facilities; Plant nurseries; Residential flat buildings; Roads; Seniors housing; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Residential accommodation; Resource recovery facilities; Restricted premises; Rural industries; Sewage treatment plants; Sex services premises; Signage; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Waste disposal facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Zone B7 Business Park

Permitted without consent

Nil

Permitted with consent

Building identification signs; Business identification signs; Child care centres; Light industries; Neighbourhood shops; Office premises; Passenger transport facilities; Respite day care centres; Roads; Warehouse or distribution centres; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Entertainment facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Heavy industrial storage establishments; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Places of public worship; Port facilities; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Residential accommodation; Resource recovery facilities; Restricted premises; Rural industries; Service stations; Sewage treatment plants; Sex services premises; Signage; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste disposal facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

Zone IN1 General Industrial

Permitted without consent

Nil

Permitted with consent

Agricultural produce industries; Building identification signs; Business identification signs; Depots; Food and drink premises; Freight transport facilities; Garden centres; General industries; Hardware and building supplies; Hospitals; Industrial training facilities; Kiosks; Landscaping material supplies; Light industries; Markets; Medical centres; Neighbourhood shops; Plant nurseries; Roads; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Biosolids treatment facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Child care centres; Commercial premises; Eco-tourist facilities; Entertainment facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Open cut mining; Port facilities; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Schools; Sewage treatment plants; Signage; Tourist and visitor accommodation; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

Zone IN2 Light Industrial

Permitted without consent

Nii

Permitted with consent

Agricultural produce industries; Building identification signs; Business identification signs; Depots; Food and drink premises; Garden centres; Hardware and building supplies; Hospitals; Industrial training facilities; Kiosks; Landscaping material supplies; Light industries; Markets; Medical centres; Neighbourhood shops; Plant nurseries; Roads; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Biosolids treatment facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Child care centres; Commercial premises; Correctional centres; Crematoria; Eco-tourist facilities; Entertainment facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Health services facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Residential accommodation; Resource recovery facilities; Respite day care centres; Restricted premises; Rural industries; Schools; Sewage treatment plants; Signage; Tourist and visitor accommodation; Transport depots; Truck depots; Waste disposal facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

ABN 45 985 891 846 Branch 004 Canterbury-Bankstown Council PO Box 8 Bankstown NSW 1885 council@cbcity.nsw.gov.au

PLANNING CERTIFICATE

UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Zone SP1 Special Activities

Permitted without consent

Nil

Permitted with consent

The purpose shown on the Land Zoning Map, including any development that is ordinarily incidental or ancillary to development for that purpose

Prohibited

Any development not specified in item 2 or 3

Zone SP2 Infrastructure

Permitted without consent

Nil

Permitted with consent

Roads; The purpose shown on the Land Zoning Map, including any development that is ordinarily incidental or ancillary to development for that purpose

Prohibited

Any development not specified in item 2 or 3

Zone RE1 Public Recreation

Permitted without consent

Nil

Permitted with consent

Boat launching ramps; Boat sheds; Building identification signs; Business identification signs; Car parks; Caravan parks; Charter and tourism boating facilities; Child care centres; Community facilities; Eco-tourist facilities; Emergency services facilities; Entertainment facilities; Environmental facilities; Environmental protection works; Extensive agriculture; Flood mitigation works; Food and drink premises; Function centres; Information and education facilities; Intensive plant agriculture; Jetties; Kiosks; Marinas; Markets; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Respite day care centres; Roads; Water recreation structures; Water supply systems; Wharf or boating facilities

Prohibited

Any development not specified in item 2 or 3

Zone RE2 Private Recreation

Permitted without consent

Nil

Permitted with consent

Building identification signs; Business identification signs; Car parks; Community facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Helipads; Kiosks; Marinas; Recreation areas; Recreation facilities (indoor); Recreation facilities (outdoor); Registered clubs; Roads; Water supply systems

Prohibited

Any development not specified in item 2 or 3

Zone E1 National Parks and Nature Reserves

Permitted without consent

Uses authorised under the National Parks and Wildlife Act 1974

Permitted with consent

Nil

Prohibited

Any development not specified in item 2 or 3

Zone W1 Natural Waterways

Permitted without consent

. Nil

Permitted with consent

Boat launching ramps; Boat sheds; Charter and tourism boating facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Jetties; Marinas; Mooring pens; Moorings; Water recreation structures; Wharf or boating facilities

Prohibited

Business premises; Hotel or motel accommodation; Industries; Multi dwelling housing; Recreation facilities (major); Residential flat buildings; Restricted premises; Retail premises; Seniors housing; Service stations; Warehouse or distribution centres; Any other development not specified in item 2 or 3

A residential dwelling erected on this land has not been identified in the Loose–Fill Asbestos Insulation Register as containing loose–fill ceiling insulation. Contact NSW Fair Trading for more information.

APPENDIX H

GROUNDWATER BORE SEARCH

■ Daily Kivel Kepults

All Groundwater Site Details

Dams

favourites search

download sites

find a site

⊞ Real Time Data - Ma...

Groundwater (Telemetered data)

favourites search

download sites

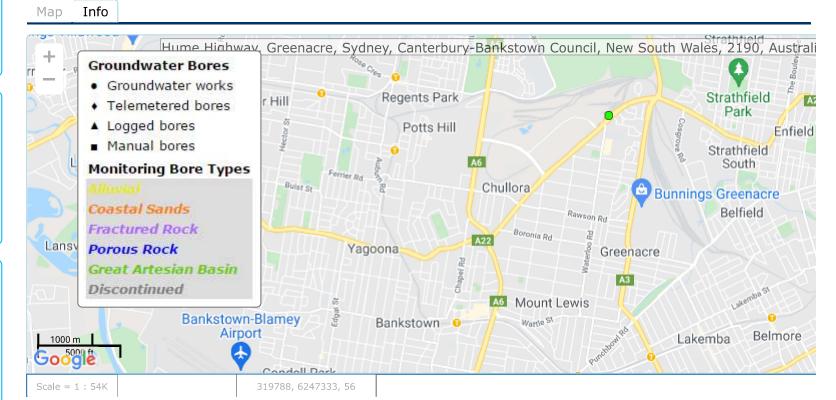
find a site

■ Real Time Data - Bor...

All Groundwater Site details

search

download sites


find a site

search by licence

ALL GROUNDWATER MAP

All data times are Eastern Standard Time

in data times are Lastern Standard Tim

bookmark this page

APPENDIX I

LOCAL METEOROLOGY

Monthly Rainfall (millimetres)

CANTERBURY RACECOURSE AWS

Station Number: 066194 · State: NSW · Opened: 1995 · Status: Open · Latitude: 33.91°S · Longitude: 151.11°E · Elevation: 3 m

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1995				•						5.0	106.6	46.8	
1996	140.0	17.8	25.4	30.8	127.2	75.0	63.4	137.8	68.6	12.2	56.6	10.4	765.2
1997	29.6	42.2	12.2	4.2	106.8	55.4	96.2	12.6		3.6	30.4	20.8	
1998	99.4	59.4	22.8	243.0	181.2	88.2	82.2	236.8	0.0	1.0	61.2	28.6	1103.8
1999	163.4	189.2	41.8	205.4	43.4	56.6	174.8	55.2	27.4	190.8	48.6	90.4	1287.0
2000	31.8	6.2	121.2	43.6	29.6	32.6	21.4	14.6	29.4	63.0	139.4	38.6	571.4
2001	181.6	144.4	67.6	75.6	242.0	15.6	92.0	53.0	23.8	36.8	71.6	23.2	1027.2
2002	73.8		35.8	37.2	69.2	14.8	10.0	9.2	10.8	32.0	23.2	89.2	
2003	9.0	74.6	77.6	205.8	314.6	63.2	40.2	40.2	8.6	67.4	87.2	75.6	1064.0
2004	62.8	109.2	96.0	82.8	11.0	9.0	30.8	88.2	74.4	218.4	53.8	77.0	913.4
2005	66.4	132.2	89.4	26.4	29.8	77.2	60.0	3.0	48.2	56.6	119.2	30.2	738.6
2006	75.4	52.8	35.4	2.0	13.6	146.0	93.2	73.6	156.6	6.4	37.2	105.8	798.0
2007	56.8	108.0	51.0	124.2	14.2	392.8	36.0	111.4	37.6	37.0	123.8	111.0	1203.8
2008	54.0	322.0	58.0	163.0	8.0	106.6	56.0	37.8	81.2	55.0	65.2	84.6	1091.4
2009	23.6	147.4	72.8	155.8	129.4	69.6	49.4	6.2	19.2	172.6	23.4	40.6	910.0
2010	27.4	144.8	29.0	19.4	110.6	103.2	58.2	21.0	65.6	87.2	172.4	64.8	903.6
2011	38.2	16.4	133.2			76.8		34.0	65.4	24.0	161.6	140.8	
2012	129.4	122.4	228.4	149.2	21.2	178.2	40.8	7.2	20.6	32.8	50.8	38.0	1019.0
2013	164.2	167.4		140.2	48.2	278.8	22.2	13.0	46.8	11.4	167.8	1.2	
2014	17.6	61.0	157.4	49.0	7.0	52.6	13.6	247.4	38.4	135.0	27.4	176.2	982.6
2015		51.2	37.6	397.6	105.2	83.2	53.2	60.8	52.4	28.4	76.8		
2016	259.6	14.0	99.6	65.0	10.4	296.4	95.4	139.4	60.2	20.4	26.8	68.0	1155.2
2017	50.0	165.0		74.4	17.2	108.8	6.6	22.6	0.2	52.6	37.4	60.4	
2018	24.6	121.4		12.4	13.4	112.2	6.0	5.8	76.4	194.2		92.0	
2019	74.4	72.6	149.0	19.4	7.4	121.2	38.0	41.6	106.8	27.4	30.6	7.0	695.4
2020	56.8	448.4	143.6	26.0	90.8	65.0	136.4	72.6	35.8	72.0	47.2	81.6	1276.2
2021	41.4	88.8	403.2	16.6	101.0	63.0	32.8	89.6					

Quality control: 12.3 Done & acceptable, 12.3 Not completed or unknown

Monthly Rainfall (millimetres)

CANTERBURY RACECOURSE AWS

Station Number: 066194 · State: NSW · Opened: 1995 · Status: Open · Latitude: 33,91°S · Longitude: 151,11°E · Elevation: 3 m

Statistics for this station calculated over all years of data

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean	78.0	115.2	95.1	94.8	74.1	105.5	56.4	62.9	48.1	63.2	73.8	64.1	972.5
Lowest	9.0	6.2	12.2	2.0	7.0	9.0	6.0	3.0	0.0	1.0	23.2	1.2	571.4
5th percentile	18.8	14.5	23.1	5.8	7.5	15.0	7.3	5.9	1.5	4.0	24.1	7.7	676.8
10th percentile	24.0	17.0	26.1	14.1	9.0	24.1	11.4	6.7	9.3	5.7	27.0	14.6	725.6
Median	56.8	108.0	72.8	65.0	43.4	77.0	49.4	40.9	42.6	36.9	56.6	64.8	1000.8
90th percentile	163.9	180.5	155.7	205.6	160.5	228.5	95.9	138.6	79.8	181.7	152.7	108.9	1225.5
95th percentile	178.1	295.4	221.3	235.6	229.8	292.0	128.4	212.4	103.0	193.4	166.6	134.8	1277.8
Highest	259.6	448.4	403.2	397.6	314.6	392.8	174.8	247.4	156.6	218.4	172.4	176.2	1287.0

1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 20 years of data available.

2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

3) Further information

http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.

APPENDIX J

REGULATORY CRITERIA

NEPM 2013 - Schedule B1

Guideline on Investigation & Health or Ecological Screening Level For Soil

Table 1A(1) Health investigation levels for soil contaminants

Table 1A(1) Health investigation levels for soil contaminants Health-based investigation levels (mg/kg)												
	Heal	th-based investiga	tion levels (mg/kg)									
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D								
	Metals a	and Inorganics										
Arsenic ²	100	500	300	3 000								
Beryllium	60	90	90	500								
Boron	4500	40 000	20 000	300 000								
Cadmium	20	150	90	900								
Chromium (VI)	100	500	300	3600								
Cobalt	100	600	300	4000								
Copper	6000	30 000	17 000	240 000								
Lead ³	300	1200	600	1 500								
Manganese	3800	14 000	19 000	60 000								
Mercury												
(inorganic) ⁵	40	120	80	730								
Methyl mercury ⁴	10	30	13	180								
Nickel	400	1200	1200	6 000								
Selenium	200	1400	700	10 000								
Zinc	7400	60 000	30 000	400 000								
Cyanide (free)	250	300	240	1 500								
	Polycyclic Aromat	ic Hydrocarbons (PAHs)									
Carcinogenic PAHs												
(as BaP TEQ) ⁶	3	4	3	40								
Total PAHs ⁷	300	400	300	4000								
1000111115		Phenols	300	4000								
Phenol	3000	45 000	40 000	240 000								
Pentachlorophenol	100	130	120	660								
Cresols	400	4 700	4 000	25 000								
Cresors		lorine Pesticides	4 000	23 000								
DDT+DDE+DDD	240	600	400	3600								
Aldrin and dieldrin	6	10	10	45								
Chlordane	50	90	70	530								
Endosulfan	270	400	340	2000								
Endrin	10	20	20	100								
Heptachlor	6	10	10	50								
НСВ	10	15	10	80								
Methoxychlor	300	500	400	2500								
Mirex	10	20	20	100								
Toxaphene	20	30	30	160								
1 OAuphone		erbicides	30	100								
2,4,5-T	600	900	800	5000								
2,4-D	900	1600	1300	9000								
۷,⊤⁻₽	900	1000	1300	3000								

	Heal	th-based investiga	tion levels (mg/kg)	
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D
MCPA	600	900	800	5000
MCPB	600	900	800	5000
Mecoprop	600	900	800	5000
Picloram	4500	6600	5700	35000
	Othe	r Pesticides		
Atrazine	320	470	400	2500
Chlorpyrifos	160	340	250	2000
Bifenthrin	600	840	730	4500
	Othe	r Organics		
PCBs ⁸	1	1	1	7
PBDE Flame				
Retardants				
(Br1-Br9)	1	2	2	10

- (1) Generic land uses are described in detail in Schedule B7 Section 3
 - HIL A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.
 - HIL B Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
 - HIL C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.
 - HIL D Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.
- (2) Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7).
- (3) Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
- (4) Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition the reliability and quality of sampling/analysis should be considered.
- (5) Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,
- (6) Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01

Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant health risk.

- (7) Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.
- (8) PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken.

Interim soil vapour health investigation levels for volatile organic

chlorinated compounds

		Interim soil vapour HIL (mg/m³)											
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial / Industrial ¹ D									
TCE	0.02	0.02	0.4	0.08									
1,1,1-TCA	60	60	1200	230									
PCE	2	2	40	8									
cis-1,2-													
dichloroethene	0.08	0.08	2	0.3									
Vinyl chloride	0.03	0.03	0.5	0.1									

- Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7, though secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.
- Interim HILs for VOCCs are conservative soil vapour concentrations that can be adopted for the purpose of screening sites where further investigation is required on a site-specific basis. They are based on the potential for vapour intrusion using an indoor air-to-soil vapour attenuation factor of 0.1 and an outdoor air-to-soil vapour attenuation factor of 0.05.
- Application of the interim HILs is based on a measurement of shallow (to 1 m depth) soil vapour (or deeper where the values are to be applied to a future building with a basement) or sub-slab soil vapour.
- The applicability of the interim HILs needs to be further considered when used for other building types such as homes with a crawl-space and no slab, which may require site-specific assessment.
- Use of the interim HILs requires comparison with data that has been collected using appropriate methods and meets appropriate data quality requirements.
- Oral and dermal exposure should be considered on a site-specific basis where direct contact exposure is likely to occur.

Table 1A(3) Soil HSLs for vapour intrusion (mg/kg)

		ow – hig	& HSL B gh densi ential		HSL C recreational / open space				HSL D Commercial / Industrial				
CHEMICAL	0 m to	1 m to	2 m to		0 m to	1 m to	2 m to		0 m to	1 m to	2 m to		Soil saturation concentrati on (Csat)
	<1 m	<2 m	<4m	4 m+	<1 m	<2 m	<4 m	4 m+	<1 m	<2 m	<4 m	4 m+	
					SAND								
Toluene	160	220	310	540	NL	NL	NL	NL	NL	NL	NL	NL	560
Ethylbenzene	55	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	64
Xylenes	40	60	95	170	NL	NL	NL	NL	230	NL	NL	NL	300
Naphthalene	3	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	9
Benzene	0.5	0.5	0.5	0.5	NL	NL	NL	NL	3	3	3	3	360
F1 ⁽⁹⁾	45	70	110	200	NL	NL	NL	NL	260	370	630	NL	950
F2 ⁽¹⁰⁾	110	240	440	NL	NL	NL	NL	NL	NL	NL	NL	NL	560
						SIL	Т						
Toluene	390	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	640
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	69

		HSL A & HSL B Low – high density residential				HSL C recreational / open space				HS nmercial			
Xylenes	95	210	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	4	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.6	0.7	1	2	NL	NL	NL	NL	4	4	6	10	440
F1 ⁽⁹⁾	40	65	100	190	NL	NL	NL	NL	250	360	590	NL	910
F2(10)	230	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	570
						CLA	Y						
Toluene	480	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	630
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	68
Xylenes	110	310	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	5	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.7	1	2	3	NL	NL	NL	NL	4	6	9	20	430
F1 ⁽⁹⁾	50	90	150	290	NL	NL	NL	NL	310	480	NL	NL	850
F2 ⁽¹⁰⁾	280	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	560

- (1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,
- (2) The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).
- (3) Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

- (4) Soil HSLs for vapour inhalation incorporate an adjustment factor of 10 applied to the vapour phase partitioning to reflect the differences observed between theoretical estimates of soil vapour partitioning and field measurements. Refer Friebel & Nadebaum (2011a) for further information.
- (5) The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- (6) The HSLs for TPH C₆-C₁₀ in sandy soil are based on a finite source that depletes in less than seven years, and therefore consideration has been given to use of sub-chronic toxicity values. The >C₈-C₁₀ aliphatic toxicity has been adjusted to represent sub-chronic exposure, resulting in higher HSLs than if based on chronic toxicity. For further information refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).
- (7) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.
- (8) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (9) To obtain F1 subtract the sum of BTEX concentrations from the C₆-C₁₀ fraction.
- (10) To obtain F2 subtract naphthalene from the >C₁₀-C₁₆ fraction.

Table 1A(4) Groundwater HSLs for vapour intrusion (mg/L)

	Low	L A & HS - high de esidentia	nsity	recreati	HSL C recreational / open space			HSL D Commercial / industrial				
CHEMICAL	2 m to <4 m	4 m to <8 m	8 m+	2 m to <4 m	4 m to <8 m	8 m+	2 m to <4 m	4 m to <8 m	8 m+	Solubility limit		
	SAND											
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61		
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9		
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21		
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17		
Benzene	0.8	0.8	0.9	NL	NL	NL	5	5	5	59		
F1 (7)	1	1	1	NL	NL	NL	6	6	7	9.0		
F2 ⁽⁸⁾	1	1	1	NL	NL	NL	NL	NL	NL	3.0		
					SILT							
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61		
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9		
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21		
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17		

	Low	L A & HS - high de esidentia	nsity	HSL C recreational/open space			Comm			
Benzene	4	5	5	NL	NL	NL	30	30	30	59
F1 ⁽⁷⁾	6	6	6	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0
					CLAY					
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	5	5	5	NL	NL	NL	30	30	35	59
F1 ⁽⁷⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0

- (1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,
- (2) The key limitations of the HSLs are presented in Friebel and Nadebaum (2011d) and should be referred to prior to application.
- (3) Detailed assumptions in the derivation of the HSLs and information on the application of the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).
- (4) The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- (5) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab

- and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.
- (6) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (7) To obtain F1 subtract the sum of BTEX concentrations from the C₆-C₁₀ fraction.
- (8) To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

Table 1A(5) Soil vapour HSLs for vapour intrusion (mg/m³)

Table IA(5)	our vap		SLA&H		ision (mg/	, III)		HSL C			HSL D				
	т			y residen	tial		rograsti		en space			Comm			
	L	ow – mg	in densit	y residen	llal		recreati	onar/ of	en space	5	Commercial / Industrial				
CHEMICAL	0 m										0 m				
	to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+
		\2 III	1111	40 III	O III	11 III			40 III	O III ·		12 III	\T III	40 III	O III ·
SAND															
Toluene	1300	3800	7300	15 000	29 000	NL	NL	NL	NL	NL	4800	16 000	39 000	84 000	NL
Ethylbenzene	330	1100	2200	4300	8700	NL	NL	NL	NL	NL	1300	4600	11 000	25 000	53 000
Xylenes	220	750	1500	3000	6100	NL	NL	NL	NL	NL	840	3,200	8000	18 000	37 000
Naphthalene	0.8	3	6	10	25	410	NL	NL	NL	NL	3	15	35	75	150
Benzene	1	3	6	10	20	360	2400	4700	9500	19 000	4	10	30	65	130
F1 ⁽⁸⁾	180	640	1,300	2600	5300	86 000	NL	NL	NL	NL	680	2800	7000	15 000	32 000
F2 ⁽⁹⁾	130	560	1200	2400	4800	NL	NL	NL	NL	NL	500	2400	NL	NL	NL
							SILT								
Toluene	1400	14 000	32 000	69 000	140 000	NL	NL	NL	NL	NL	5700	63 000	NL	NL	NL
Ethylbenzene	380	4200	9700	21 000	43 000	NL	NL	NL	NL	NL	1500	19 000	54 000	NL	NL
Xylenes	260	2900	6800	15 000	30 000	NL	NL	NL	NL	NL	1000	13 000	38 000	NL	NL
Naphthalene	0.9	10	25	60	120	NL	NL	NL	NL	NL	4	50	150	350	750
Benzene	1	10	25	55	110	1800	12 000	24 000	48 000	97 000	4	50	140	320	670

		HS	SL A & F	ISL B				HSL C			HSL D				
	I	ow - hig	gh densit	y residen	tial	recreational / open space					Commercial / Industrial				
F1(8)	210	2600	6000	13 000	26 000	NL	NL	NL	NL	NL	850	11 000	33 000	77 000	160 000
F2(9)	160	2300	5400	NL	NL	NL	NL	NL	NL	NL	670	NL	NL	NL	NL
							CLAY	l							
Toluene	1600	23 000	53 000	110 000	NL	NL	NL	NL	NL	NL	6500	100 000	NL	NL	NL
Ethylbenzene	420	6800	16 000	35 000	NL	NL	NL	NL	NL	NL	1800	31 000	NL	NL	NL
Xylenes	280	4800	11 000	24 000	50 000	NL	NL	NL	NL	NL	1200	21 000	NL	NL	NL
Naphthalene	1	20	45	95	200	NL	NL	NL	NL	NL	4	85	240	560	1200
Benzene	1	15	40	90	180	3000	20 000	40 000	81 000	160 000	5	80	230	530	1100
F1(8)	230	4200	9900	21 000	44 000	NL	NL	NL	NL	NL	1000	19 000	55 000	130 000	270 000
F2(9)	180	3,800	NL	NL	NL	NL	NL	NL	NL	NL	800	NL	NL	NL	NL

- 1. Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,
- 2. The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).
- 3. Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).
- 4. The maximum possible soil vapour concentrations have been calculated based on vapour pressures of the pure chemicals. Where soil vapour HSLs exceed these values a soil-specific source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- 5. Soil vapour HSLs should be compared with measurements taken as laterally close as possible to the soil or groundwater sources of vapour (i.e. within or above vapour sources). Consideration is required of where the sample is taken, the current condition of the site and the likely future condition of the site. Shallow gas measurements in open space (less than 1 m below ground surface) may be subject to influences of weather conditions and moisture.
- 6. The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.

- 7. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 8. To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- 9. To obtain F2 subtract naphthalene from the >C $_{10}$ -C $_{16}$ fraction.

Table 1B(1) Soil-specific added contaminant limits for aged zinc in soil

rabie ib(i)			imits (ACL, m										
			ecological sig										
pH^a			CEC ^b (cmol _c /kg)									
	5	10	20	30	40	60							
4.0	15	20	20	20	20	20							
4.5	20	25	25	25	25	25							
5.0	30	40	40	40	40	40							
5.5	40	60	60	60	60	60							
6.0	50	90	90	90	90	90							
6.5	50	90	130	130	130	130							
7.0	50	90	150	190	190	190							
7.5	50	90	150	210	260	280							
	<u>.</u>	Urban resi	dential/public	open space ¹									
pH^a		Urban residential/public open space ¹ CEC ^b (cmol/kg)											
	5	10	20	30	40	60							
4.0	70	85	85	85	85	85							
4.5	100	120	120	120	120	120							
5.0	130	180	180	180	180	180							
5.5	180	270	270	270	270	270							
6.0	230	400	400	400	400	400							
6.5	230	400	590	590	590	590							
7.0	230	400	700	880	880	880							
7.5	230	400	700	960	1200	1300							
		Con	mercial/indu	strial									
pH^a		1	CEC^{b} (cmol _c /kg)	1								
	5	10	20	30	40	60							
4.0	110	130	130	130	130	130							
4.5	150	190	190	190	190	190							
5.0	210	290	290	290	290	290							
5.5	280	420	420	420	420	420							
6.0	360	620	620	620	620	620							
6.5	360	620	920	920	920	920							
7.0	360	620	1100	1400	1400	1400							
7.5	360	620	1100	1500	1900	2000							

^{1.} Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

^{2.} Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

^{3.} The EIL is calculated from summing the ACL and the ABC.

a = pH measured using the CaCl₂ method (Rayment & Higginson 1992).

b = CEC measured using the silver thiourea method (Chabra et al. 1972).

Table 1B(2) Soil-specific added contaminant limits for aged copper in soils

1 able 1b(2)	3011-specific au	ded Comamma	it illilits for age	d copper in sor	15		
	Cu added contaminant limits (ACL, mg added contaminant/kg)						
Areas of ecological significance							
		CEC (cmol	c/kg) ^a based				
5	10	20	30	40	60		
30	65	70	70	75	80		
		pH^bb	pased				
4.5	5.5	6	6.5	7.5	8.0		
20	45	65	90	190	270		
	Uı	ban residential/	public open spa	ce ¹			
		CEC (cmol	c/kg) ^a based				
5	10	20	30	40	60		
95	190	210	220	220	230		
		pH^bb	pased				
4.5	5.5	6	6.5	7.5	8.0		
60	130	190	280	560	800		
		Commercia	l/industrial				
		CEC (cmol	c/kg) ^a based				
5	10	20	30	40	60		
140	280	300	320	330	340		
	pH^bbased						
4.5	5.5	6	6.5	7.5	8.0		
85	190	280	400	830	1200		

- 1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- 2. The lower of the CEC or the pH-based ACLs for the land use and soil conditions is the ACL to be used.
- 3. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 4. The EIL is calculated from summing the ACL and the ABC.
- a = CEC measured using the silver thiourea method (Chabra et al. 1972).
- b = pH measured using the $CaCl_2$ method (Rayment & Higginson 1992).

Table 1B(3) Soil-specific added contaminant limits for aged chromium III and nickel in soil

CHEMICAL	Clay content	Added contamin	ant limits (mg added for various land u	
	(% clay)	Areas of ecological significance	Urban residential and public open space	Commercial and industrial
	1	60	190	310
Chromium	2.5	80	250	420
III	5	100	320	530
	≥10	130	400	660
	CEC ^a (cmol _o /kg	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial
	5	5	30	55
Nickel	10	30	170	290
	20	45	270	460
	30	60	350	600
	40	70	420	730
	60	95	560	960

- 1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 3. The EIL is calculated from summing the ACL and the ABC.
- a = CEC measured using the silver thiourea method (Chabra et al. 1972).

Table 1B(4) Generic added contaminant limits for lead in soils irrespective of their physicochemical properties

<u>r</u>	r-yrrrrrrrrrrr-					
	Pb added contaminant limit (ACL, mg added contaminant/kg) for various land uses					
CHEMICAL	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial			
Lead	470	1100	1800			

- 1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- 2. Aged values are applicable to lead contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 3. The EIL is calculated from summing the ACL and the ABC.

Generic EILs for aged As, fresh DDT and fresh naphthalene in soils

irrespective of their physicochemical properties

_	Ecological Investigation Levels (mg total contaminant/kg)				
CHEMICAL	Areas of ecological	Urban residential and	Commercial and industrial		
	significance	public open space ¹			
Arsenic ²	40	100	160		
DDT ³	3	180	640		
Naphthalene ³	10	170	370		

- 1. Urban residential/public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.
- 4. Insufficient data was available to calculate ACLs for As, DDT and naphthalene. The EIL should be taken directly from Table 1B(5).

Table 1B(6) ESLs for TPH fractions F1 - F4, BTEX and benzo(a)pyrene in soil

CHEMICAL	Soil	ESLs (mg/kg dry soil)				
	texture	Areas of ecological significance	Urban residential and public open space	Commercial and industrial		
F1 C ₆ -C ₁₀		125*	180*	215*		
F2 >C ₁₀ -C ₁₆	Coarse/ Fine	25*	120*	170*		
F3 >C ₁₆ -C ₃₄	Coarse	-	300	1700		
	Fine	-	1300	2500		
F4 >C ₃₄ -C ₄₀	Coarse	-	2800	3300		
	Fine	-	5600	6600		
Benzene	Coarse	8	50	75		
	Fine	8	65	95		
Toluene	Coarse	10	85	135		
	Fine	65	105	135		
Ethylbenzene	Coarse	1.5	70	165		
	Fine	40	125	185		
Xylenes	Coarse	10	105	180		
	Fine	1.6	45	95		
Benzo(a)pyrene	Coarse	0.7	0.7	1.4		
	Fine	0.7	0.7	1.4		

- (1) ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.
- (2) '-' indicates that insufficient data was available to derive a value.
- (3) To obtain F1, subtract the sum of BTEX concentrations from C_6 - C_{10} fraction.

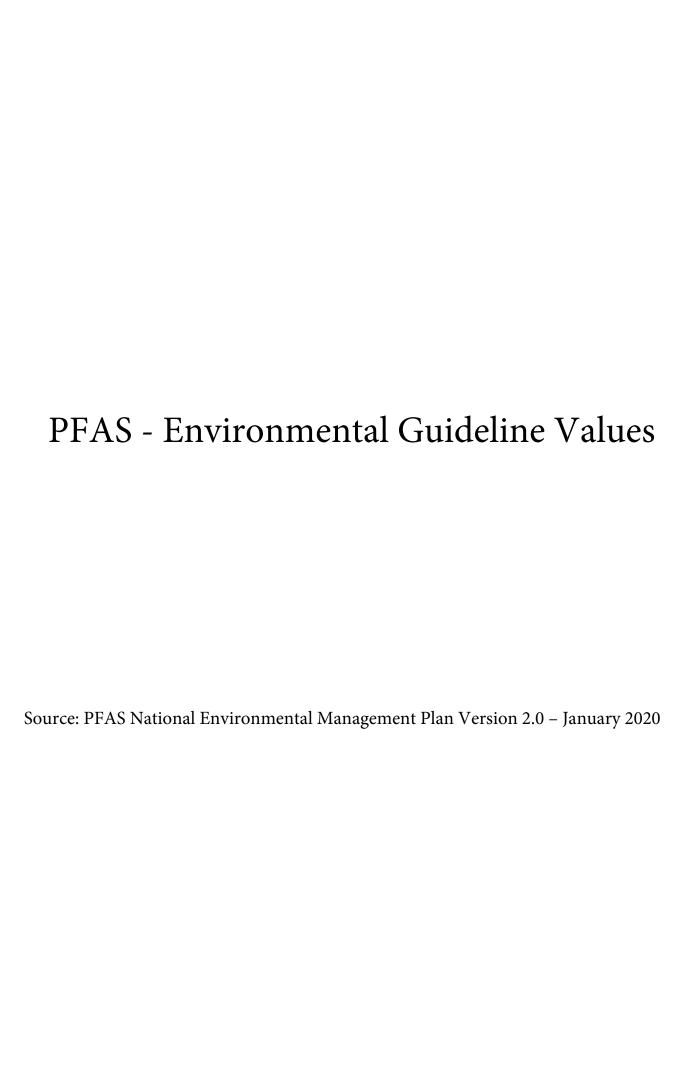
Table 1 B(7) Management Limits for TPH fractions F1-F4 in soil

TPH fraction	Soil texture	Management Limits ¹ (mg/kg dry soil)		
		Residential, parkland and public open space	Commercial and industrial	
F1 ² C ₆ - C ₁₀	Coarse	700	700	
	Fine	800	800	
$F2^2 > C_{10}-C_{16}$	Coarse	1000	1000	
	Fine	1000	1000	
F3 >C ₁₆ -C ₃₄	Coarse	2500	3500	
	Fine	3500	5000	
F4 >C ₃₄ -C ₄₀	Coarse	10 000	10 000	
	Fine	10 000	10 000	

¹ Management limits are applied after consideration of relevant ESLs and HSLs

 $^{^{2}}$ Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

Table 4
SOIL HEALTH SCREENING LEVELS FOR DIRECT CONTACT (mg/kg)^(a,b)


Chemical	HSL-A Residential (Low Density)	HSL-B Residential (High Density)	HSL-C Recreational Open Space	HSL-D Commercial / Industrial
Toluene	14,000	21,000	18,000	99,000
Ethylbenzene	4,500	5,900	5,300	27,000
Xylenes	12,000	17,000	15,000	81,000
Naphthalene	1,400	2,200	1,900	11,000
Benzene	100	140	120	430
C6-C10	4,400	5,600	5,100	26,000
>C10-C16	3,300	4,200	3,800	20,000
>C16-C34	4,500	5,800	5,300	27,000
>C34-C40	6,300	8,100	7,400	38,000

- (a) Derived assumptions used in the derivation of the HSLs and information on how to apply the HSLs are presented in:
 - Frebel E & Nadebaum P 2011. Health screening levels for petroleum hydrocarbons in soil and groundwater Part 1: Technical development document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
 - Frebel E & Nadebaum P 2011. Health screening levels for petroleum hydrocarbons in soil and groundwater Part 2: Application document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
- (b) The key limitations in the development of the HSLs should be referred to prior to application. These are presented in the text of the summary document and the HSL application checklist in Appendix A of the Application Document (Frebel & Nadebaum 2011 Part 2)

Table 7: Health screening levels for asbestos contamination in soil

Form of Asbestos	Health Screening Level (w/w)				
FOIII Of Aspestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴	
Bonded ACM	0.01%	0.04%	0.02%	0.05%	
FA & AF	0.001%				
(friable asbestos & fines)	0.001%				
All forms of asbestos	No visible asbestos for surface soil				

- 1. Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
- 2. Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
- 3. Residential C includes public open space such as parks, playgrounds, playing fields (e.g. Ovals), secondary schools and unpaved footpaths.
- 4. Commercial/Industrial D includes premises such as shops, offices, factories and industrial sites.

PFAS ENVIRONMENTAL GUIDELINE VALUES

1. Human Health Guideline Values

The national methodologies used by health agencies in deriving the values in Table 1 include a level of conservatism in the drinking water and recreational water health-based guideline values. The methods assume only a minor portion (10%) of the TDI is allocated to this source. Therefore, 90% of intake is attributed to other exposure pathways, which means that exceeding these values does not constitute a risk if other pathways are controlled.

The recreational water quality values have been updated from the values published in the NEMP 1.0 and are based on revised numbers derived by NHMRC (2019). The revised numbers are based on changes in the assumption for the frequency and likelihood of exposure during recreational activities.

Table 1. Human health guideline values developed by health regulators

Sum of PFOS and PFHxS	PFOA	Description	Comments and source
0.02 μg/kg _{bw} /day	0.16 μg/kg _{bw} /day	Tolerable daily intake (TDI)	FSANZ 2017
0.07 μg/L	0.56 μg/L	Drinking water quality guideline value	Australian Government Department of Health 2019
2 μg/L	10 μg/L	Recreational water quality guideline value*	NHMRC 2019

Notes: bw = body weight, μ g = micrograms.

Where the guideline values refer to the sum of PFOS and PFHxS, this includes PFOS only, PFHxS only, and the sum of the two.

*NHMRC (2019) notes that people's use of recreational water is not the same, given Australia's climate and geography. Some recreational water resources may be used less frequently than the assumed guidelines (150 days/year), and (in rare cases) some may be used more frequently. In such cases more locally-appropriate event frequency based recreational guidelines can be considered in consultation with the state and regulatory health regulator.

1.1 Human health investigation levels for soil

Table 2. Human health investigation levels for soil

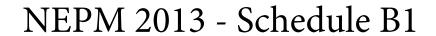
Sum of PFOS and PFHxS	PFOA	Land use	Comments and source
0.01 mg/kg	0.1 mg/kg	Residential with garden/accessibl e soil (HIL A)	Assumes home-grown produce provides up to 10% of fruit and vegetable intake (does not account for consumption of any eggs from home poultry, nor of milk or meat from stock on the premises). Also includes children's day care centres, preschools and primary schools.
			The HILs were derived using the methodology consistent with assumptions set out in the ASC NEPM for HIL A.
			Note: If home-grown produce provides more than the 10% of fruit and vegetable intake assumed in the ASC NEPM generic example, a site-specific risk assessment is required. As an example, if home grown produce provides up to 50% of fruit and vegetable intake, the screening value would be 0.002 mg/kg for the sum of PFOS and PFHxS, and 0.02 mg/kg for PFOA.
2 mg/kg	20 mg/kg	Residential with minimal opportunities for soil access (HIL B)	Assumes no potential use of soil for consumption of home-grown produce. Includes dwellings with fully and permanently paved yard space such as high rise-buildings and flats. These were derived using the methodology consistent with assumptions set out in the ASC NEPM for HIL B.
1 mg/kg	10 mg/kg	Public open space (HIL C)	Relevant for public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools (except for soil used for agricultural studies) and footpaths. Excludes undeveloped public open space (such as urban bushland and reserves), which should be subject to a site-specific assessment where appropriate. These were derived using the methodology consistent
			with assumptions set out in the ASC NEPM for HIL C.
20 mg/kg	50 mg/kg	Industrial/ commercial (HIL D)	Assumes 8 hours is spent indoors and 1 hour spent outdoors at a site such as a shop, office, factory or industrial site. If the typical exposure for a site is predominantly outdoors with significant earthen areas, recalculation of a site-specific value is recommended.
			These were derived using the methodology consistent with assumptions set out in the ASC NEPM for HIL D.
			Note: the industrial/commercial direct exposure criterion for PFOA (including its salts and related compounds) has been set as 50 mg/kg in anticipation of the Stockholm Convention low content limit of 50 mg/kg.

Note: Where the guideline values refer to the sum of PFOS and PFHxS, this includes PFOS only, PFHxS only, and the sum of the two.

2. Ecological guideline values

The ecological guideline values are used to assess and investigate potential risks to aquatic and terrestrial ecosystems.

2.1 Ecological soil guidelines values


Table 3. Ecological guideline values for soil

Exposure scenario	PFOS	PFOA	Land use	Comments and source
Ecological direct exposure	1 mg/kg	10 mg/kg	All land uses	Future work may be undertaken to review available soil guideline values proposed by Australian research and industry organisations
				The human health screening value for public open space is used as an interim value (see Table 2 above).
Ecological indirect exposure	0.01 mg/kg		All land uses	The guideline value is based on dietary exposure of a secondary consumer as the most sensitive exposure pathway assessed. This value may not be protective of specific animals relevant to Australia, including predatory animals such as quolls, antechinus and reptiles. For intensively developed sites with no secondary consumers and minimal potential for indirect ecological exposure, a higher criterion of up to 0.14 mg/kg may be appropriate as outlined in the accompanying text in section 8.2.1.

2.2 Ecological water quality guideline values

Table 5 Ecological water quality guideline values developed by water regulators

Exposure scenario	PFOS	PFOA	Exposure scenario	Comments and source	
Freshwater	0.00023 μg/L	19 μg/L	99% species protection - high conservation value systems	Australian and New Zealand Guidelines for Fresh and Marine Water Quality - technical draft default guideline values for PFOS and	
	0.13 μg/L	220 μg/L	95% species protection - slightly to moderately disturbed systems	PFOA. Note 1: The 99% species protection level for PFOS is close to the level of detection. Agencies may wish to apply a 'detect'	
	2 μg/L	632 μg/L	90% species protection - highly disturbed systems	threshold in such circumstances rather than a quantified measurement.	
	31 μg/L	1824 μg/L	80% species protection - highly disturbed systems	Note 2: The draft guidelines do not account for effects which result from the biomagnification of toxicants in airbreathing animals or in animals which prey on aquatic organisms. Note 3: The WQGs advise that the 99% level of protection be used for slightly to moderately disturbed systems. This approach is generally adopted for chemicals that bioaccumulate and biomagnify in wildlife. Regulators may specify or environmental legislation may prescribe the level of species protection required, rather than allowing for case-by-case assessments.	
Interim marine	0.00023 μg/L	19 μg/L	99% species protection - high conservation value systems	As above. Freshwater values are to be used on an interim basis until final marine guideline	
	0.13 μg/L	220 μg/L	95% species protection - slightly to moderately disturbed systems	values can be set using the nationally- agreed process under the Australian and New Zealand Guidelines for Fresh and Marine Water Quality.	
	2 μg/L	632 μg/L	90% species protection - highly disturbed systems	Note 1: The WQG advise that in the case of estuaries, the most stringent of freshwate	
	31 μg/L	1824 μg/L	80% species protection - highly disturbed systems	and marine criteria apply, taking account of any available salinity correction. Note 2: Marine guideline values developed by CRC CARE are under consideration through the nationally-agreed water quality guideline development process.	

Guideline - Groundwater Investigation Levels

Table 1C Groundwater Investigation Levels (GILs)

Table 1C Groundwater Investigati	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(µg/L)	(µg/L)	(mg/L)
Meta	ls and Metalloids	6	
Aluminium, Al pH>6.5	55	-	-
Antimony	-	-	0.003
Arsenic	24 as As(III) 13 as As(V)	-	0.01
Barium	-	-	2
Beryllium	-	-	0.06
Boron	370 ^C	-	4
Cadmium H	0.2	0.7^{D}	0.002
Chromium, Cr (III) H	-	27	-
Chromium, Cr (VI)	1 ^C	4.4	0.05
Cobalt	-	1	-
Copper H	1.4	1.3	2
Iron, (Total)	-	-	-
Lead H	3.4	4.4	0.01
Manganese	1900 ^C	-	0.5
Mercury (Total)	0.06^{D}	0.1^{D}	0.001
Molybdenum	-	-	0.05
Nickel H	11	7	0.02
Selenium (Total)	5 ^D	-	0.01
Silver	0.05	1.4	0.1
Tributyl tin (as Sn)	-	0.006 ^C	-
Tributyl tin oxide	-	-	0.001
Uranium	-	-	0.017
Vanadium	-	100	-
Zinc H	8 ^C	15 ^C	-
Non-metallic Inorganics			
Ammonia ^E (as NH ₃ -N at pH 8)	900 ^C	910	-
Bromate	-	-	0.02
Chloride	-	-	-
Cyanide (as un-ionised Cn)	7	4	0.08
Fluoride	-	-	1.5

	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(µg/L)	(µg/L)	(mg/L)
Hydrogen sulphide (un-ionised H ₂ S measured as S)	1	-	-
Iodide	-	-	0.5
Nitrate (as NO ₃)	refer to guideline	refer to guideline	50
Nitrite (as NO ₂)	refer to guideline	refer to guideline	3
Nitrogen	refer to guideline	refer to guideline	-
Phosphorus	refer to guideline	refer to guideline	-
Sulphate (as SO ₄)	-	-	500
Organic ald	chohols/other org	ganics	
Ethanol	1400	-	-
Ethylenediamine tetra-acetic acid (EDTA)	-	-	0.25
Formaldehyde	-	-	0.5
Nitrilotriacetic acid	-	-	0.2
	Anilines		
Aniline	8	-	-
2,4-Dichloroaniline	7	-	-
3,4-Dichloroaniline	3	150	-
Chlo	rinated Alkanes		
Dichloromethane	-	-	0.004
Trihalomethanes (total)	-	-	0.25
Tetrachloromethane (carbon tetrachloride)	-	-	0.003
1,2-Dichloroethane	-	-	0.003
1,1,2-Trichloroethane	6500	1900	-
Hexachloroethane	290 ^D	-	-
Chlorinated Alkenes			
Chloroethene (vinyl chloride)	-	-	0.0003
1,1-Dichloroethene	-	-	0.03
1,2-Dichoroethene	-	-	0.06
Tetrachloroethene (PCE) (Perchloroethene)	-	-	0.05

Groundwater Inves			tigation Levels	
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B	
	(µg/L)	(µg/L)	(mg/L)	
Chlo	rinated Benzenes	·		
Chlorobenzene	-	-	0.3	
1,2- Dichlorobenzene	160	-	1.5	
1,3- Dichlorobenzene	260	-	-	
1,4- Dichlorobenzene	60	-	0.04	
1,2,3- Trichlorobenzene	3 ^D	-	0.03	
1,2,4- Trichlorobenzene	85 ^D	20 ^D	for individual or	
1,3,5-Trichlorobenzene	-	-	total trichlorobenzenes	
Polychlorin	ated Biphenyls (PCBs)	_	
Aroclor 1242	0.3 ^D	-	-	
Aroclor 1254	0.01 ^D	-	-	
Other Chl	orinated Compo	unds		
Epichlorohydrin	-	-	0.1	
Hexachlorobutadiene	-	-	0.0007	
Monochloramine	-	-	3	
Monocyclic	Aromatic Hydroc	carbons		
Benzene	950	500 ^C	0.001	
Toluene	-	-	0.8	
Ethylbenzene	-	-	0.3	
Xylenes	350 (as o- xylene) 200 (as p- xylene)	-	0.6	
Styrene (Vinyl benzene)	-	-	0.03	
Polycyclic Aron	natic Hydrocarbo	ons (PAHs)		
Naphthalene	16	50 ^C	-	
Benzo[a]pyrene	-	-	0.00001	
	Phenols			
Phenol	320	400	-	
2-Chlorophenol	340 ^C	-	0.3	
4-Chlorophenol	220	-	-	
2,4-Dichlorophenol	120	-	0.2	
2,4,6-Trichlorophenol	3 ^D	-	0.02	
2,3,4,6-Tetrachlorophenol	10 ^D		-	
Pentachlorophenol	3.6 ^D	11 ^D	0.01	

	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(μg/L)	(µg/L)	(mg/L)
2,4-Dinitrophenol	45	-	-
	Phthalates		
Dimethylphthalate	3700	-	-
Diethylphthalate	1000	-	-
Dibutylphthalate	10 ^{D}	-	-
Di(2-ethylhexyl) phthalate	-	-	0.01
	Pesticides		
Acephate	-	-	0.008
Aldicarb	-	-	0.004
Aldrin plus Dieldrin	-	-	0.0003
Ametryn	-	-	0.07
Amitraz	-	-	0.009
Amitrole	-	-	0.0009
Asulam	-	-	0.07
Atrazine	13	-	0.02
Azinphos-methyl	-	-	0.03
Benomyl	-	-	0.09
Bentazone	-	-	0.4
Bioresmethrin	-	-	0.1
Bromacil	-	-	0.4
Bromoxynil	-	-	0.01
Captan	-	-	0.4
Carbaryl	-	-	0.03
Carbendazim (Thiophanate-methyl)	-	-	0.09
Carbofuran	0.06	-	0.01
Carboxin	-	-	0.3
Carfentrazone-ethyl	-	-	0.1
Chlorantraniliprole	-	-	6
Chlordane	0.03 ^D	-	0.002
Chlorfenvinphos	-	-	0.002
Chlorothalonil	-	-	0.05
Chlorpyrifos	0.01 ^D	0.009 ^D	0.01
Chlorsulfuron	-	-	0.2
Clopyralid	-	-	2

Substance	Groundwater Investigation Levels		
	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(μg/L)	(µg/L)	(mg/L)
Cyfluthrin, Beta-cyfluthrin	-	-	0.05
Cypermethrin isomers	-	-	0.2
Cyprodinil	-	-	0.09
1,3-Dichloropropene	-	-	0.1
2,2-DPA	-	-	0.5
2,4-D [2,4-dichlorophenoxy acetic acid]	280	-	0.03
DDT	0.006 ^D	-	0.009
Deltramethrin	-	-	0.04
Diazinon	0.01	-	0.004
Dicamba	-	-	0.1
Dichloroprop	-	-	0.1
Dichlorvos	-	-	0.005
Dicofol	-	-	0.004
Diclofop-methyl	-	-	0.005
Dieldrin plus Aldrin	-	-	0.0003
Diflubenzuron	-	-	0.07
Dimethoate	0.15	-	0.007
Diquat	1.4	-	0.007
Disulfoton	-	-	0.004
Diuron	-	-	0.02
Endosulfan	0.03^{D}	0.005^{D}	0.02
Endothal	-	-	0.1
Endrin	0.01^{D}	$0.004^{\rm D}$	-
EPTC	-	-	0.3
Esfenvalerate	-	-	0.03
Ethion	-	-	0.004
Ethoprophos	-	-	0.001
Etridiazole	-	-	0.1
Fenamiphos	-	-	0.0005
Fenarimol	-	-	0.04
Fenitrothion	0.2	-	0.007
Fenthion	-	-	0.007
Fenvalerate	-	-	0.06
Fipronil	-	-	0.0007

	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(μg/L)	(µg/L)	(mg/L)
Flamprop-methyl	-	-	0.004
Fluometuron	-	-	0.07
Fluproponate	-	-	0.009
Glyphosate	370	-	1
Haloxyfop	-	-	0.001
Heptachlor	0.01^{D}	-	-
Heptachlor epoxide	-	-	0.0003
Hexazinone	-	-	0.4
Imazapyr	-	-	9
Iprodione	-	-	0.1
Lindane (γ-HCH)	0.2	-	0.01
Malathion	0.05	-	0.07
Mancozeb (as ETU, ethylene thiourea)	-	-	0.009
MCPA	-	-	0.04
Metaldehyde	-	-	0.02
Metham (as methylisothiocyanate, MITC)	-	-	0.001
Methidathion	-	-	0.006
Methiocarb	-	-	0.007
Methomyl	3.5		0.02
Methyl bromide	-	-	0.001
Metiram (as ETU, ethylene thiourea)	-	-	0.009
Metolachlor/s-Metolachlor	-	-	0.30
Metribuzin	-	-	0.07
Metsulfuron-methyl	-	-	0.04
Mevinphos	-	-	0.006
Molinate	3.4	-	0.004
Napropamide	-	-	0.4
Nicarbazin	-	-	1
Norflurazon	-	-	0.05
Omethoate	-	-	0.001
Oryzalin	-	-	0.4
Oxamyl	-	-	0.007

	Ground	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B	
	(µg/L)	(µg/L)	(mg/L)	
Paraquat	-	-	0.02	
Parathion	0.004 ^C	-	0.02	
Parathion methyl	-	-	0.0007	
Pebulate	-	-	0.03	
Pendimethalin	-	-	0.4	
Pentachlorophenol	-	-	0.01	
Permethrin	-	-	0.2	
Picloram	-	-	0.30	
Piperonyl butoxide	-	-	0.6	
Pirimicarb	-	-	0.007	
Pirimiphos methyl	-	-	0.09	
Polihexanide	-	-	0.7	
Profenofos	-	-	0.0003	
Propachlor	-	-	0.07	
Propanil	-	-	0.7	
Propargite	-	-	0.007	
Proparzine	-	-	0.05	
Propiconazole	-	-	0.1	
Propyzamide	-	-	0.07	
Pyrasulfatole	-	-	0.04	
Pyrazophos	-	-	0.02	
Pyroxsulam	-	-	4	
Quintozene	-	-	0.03	
Simazine	3.2	-	0.02	
Spirotetramat	-	-	0.2	
Sulprofos	-	-	0.01	
2,4,5-T	36	-	0.1	
Tebuthiuron	2.2	-	-	
Temephos	-	0.05 ^D	0.4	
Terbacil	-	-	0.2	
Terbufos	-	-	0.0009	
Terbuthylazine	-	-	0.01	
Terbutryn	-	-	0.4	
Thiobencarb	2.8	-	0.04	
Thiometon	-	-	0.004	

	Groundwater Investigation Levels		
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(µg/L)	(µg/L)	(mg/L)
Thiram	0.01	-	0.007
Toltrazuril	-	-	0.004
Toxafene	0.1 ^D	-	-
Triadimefon	-	1	0.09
Trichlorfon	-	1	0.007
Triclopyr	-	1	0.02
Trifluralin	2.6 ^D	-	0.09
Vernolate	-	-	0.04
Surfactants			
Linear alkylbenzene sulfonates (LAS)	280	-	-
Alcohol ethoxylated sulfate (AES)	650	-	-
Alcohol ethoxylated surfactants (AE)	140	-	-

- A Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.
- B Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).
- C Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
- D Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.
- E For changes in GIL with pH refer to ANZECC & ARMCANZ (2000) for further guidance.
- H Values have been calculated using a hardness of 30 mg/L CaCO₃ refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness.

US EPA Regional Screening Level Summary Table

November 2020

Key: I = IRIS;	P = PPRTV; O =	OPP; A = ATSI	DR; C = Cal E	PA; X = F	PPRTV Scree	ning Le	vel; H = HEAS	F; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V	= volatile; R = R	RBA applied ;	c = can	cer; n = noncan	ncer; * =	where: n S	SL < 100	X c SL; ** =	where	e n SL < 10X c	SL; SSL values	s are based or	DAF=1	1; m = ceiling
	1	Foxicity and Ch	emical-specific	Informat	tion			limit exceeded; s = Csat exceed	ied.					Screenin	ng Level	s				Protection of	Ground '	Water SSLs
SFO	k k e IUR e	RfD	k RfCi	k v			C _{sat}			Resident Soi		Industrial Soil	-	Resident Air		ndustrial Air		Tapwater	MCL	Risk-based SSI		MCL-based SSI
	1 - 1	(mg/kg-day)		y I mu	utagen GIAB	S AB		Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³)	key	(ug/m ³)	key	(ug/L) key	(ug/L)	(mg/kg)	key	(mg/kg)
(0 0),		1.2E-03	0		1	0.	1	Acephate	30560-19-1	7.6E+01	n	9.8E+02	n	, ,	1 -			2.4E+01 n	(0 /	5.3E-03	n	
	2.2E-06 I		9.0E-03	I V	1	_	1.1E+05	Acetaldehyde	75-07-0	1.1E+01	C**	4.9E+01	C**	1.3E+00	C**	5.6E+00		2.6E+00 c**		5.2E-04	C**	
		2.0E-02 9.0E-01	I 3.1E+01	Δ \/	1	0.	1 1.1E+05	Acetochlor Acetone	34256-82-1 67-64-1	1.3E+03 6.1E+04	n n	1.6E+04 6.7E+05	nms	3.2E+04	n	1.4E+05		3.5E+02 n 1.4E+04 n		2.8E-01 2.9E+00	n n	
		3.0E-01	2.0E-03		i	0.		Acetone Cyanohydrin	75-86-5	2.8E+06	nm	1.2E+07		2.1E+00	n	8.8E+00	n	1.42.04 11		2.52.00		
			6.0E-02	I V	1_			Acetonitrile	75-05-8	8.1E+02	n	3.4E+03		6.3E+01	n	2.6E+02		1.3E+02 n		2.6E-02	n	
3.8E+00	C 1.3E-03 C	1.0E-01	1	V	1	0.		Acetophenone Acetylaminofluorene, 2-	98-86-2 53-96-3	7.8E+03 1.4E-01	ns	1.2E+05 6.0E-01	nms	2.2F-03	С	9.4E-03		1.9E+03 n 1.6E-02 c		5.8E-01 7.5E-05	n c	
			I 2.0E-05	ΙV	1		2.3E+04	Acrolein	107-02-8	1.4E-01	n	6.0E-01	n	2.1E-02	n	8.8E-02		4.2E-02 n		8.4E-06	n	
5.0E-01	I 1.0E-04 I		I 6.0E-03		M 1	0.		Acrylamide	79-06-1	2.4E-01	С	4.6E+00	С	1.0E-02	С	1.2E-01	-	5.0E-02 c		1.1E-05	С	
5.4E-01	I 6.8E-05 I		I 1.0E-03 A 2.0E-03		1		1.1E+05	Acrylic Acid Acrylonitrile	79-10-7 107-13-1	9.9E+01 2.5E-01	n c*	4.2E+02 1.1E+00		1.0E+00 4.1E-02	n c*	4.4E+00 1.8E-01		2.1E+00 n 5.2E-02 c*		4.2E-04 1.1E-05	n c*	
0.12 01	1 0.02 00 1		6.0E-03		1	0.	1	Adiponitrile	111-69-3	8.5E+06	nm	3.6E+07		6.3E+00	n	2.6E+01	n	0.22 02 0		1.12 00		
5.6E-02	С	1.0E-02	!		1	0.		Alachlor	15972-60-8	9.7E+00	c*	4.1E+01	С					1.1E+00 c	2.0E+00	8.7E-04	С	1.6E-03
		1.0E-03 1.0E-03	1		1	0.		Aldicarb Sulfone	116-06-3 1646-88-4	6.3E+01 6.3E+01	n n	8.2E+02 8.2E+02	n n					2.0E+01 n 2.0E+01 n	3.0E+00 2.0E+00	4.9E-03 4.4E-03	n n	7.5E-04 4.4E-04
1		1.02 00			1	0.		Aldicarb sulfoxide	1646-87-3	0.02.01		0.22 - 02						2.02.01	4.0E+00			8.8E-04
1.7E+01	I 4.9E-03 I	3.0E-05	1 4.05.04	V	1		4.45.65	Aldrin	309-00-2	3.9E-02	c*	1.8E-01	С	5.7E-04	С	2.5E-03		9.2E-04 c		1.5E-04	С	
2.1E-02	C 6.0E-06 C	5.0E-03	I 1.0E-04 1.0E-03		1			Allyl Alcohol Allyl Chloride	107-18-6 107-05-1	3.5E+00 7.2E-01	n c**	1.5E+01 3.2E+00	n c**	1.0E-01 4.7E-01	n c**	4.4E-01 2.0E+00		2.1E-01 n 7.3E-01 c**		4.2E-05 2.3E-04	n c**	
			P 5.0E-03		1			Aluminum	7429-90-5	7.7E+04	n	1.1E+06	nm	5.2E+00		2.2E+01	n	2.0E+04 n		3.0E+04	n	
		4.0E-04	!		1	_		Aluminum Phosphide	20859-73-8	3.1E+01	n	4.7E+02	n					8.0E+00 n		4.05.04		
2.1F+01	C 6.0E-03 C	9.0E-03	1		1	0. 0.		Ametryn Aminobiphenyl, 4-	834-12-8 92-67-1	5.7E+02 2.6E-02	n c	7.4E+03 1.1E-01	n C	4.7E-04	С	2.0E-03		1.5E+02 n 3.0E-03 c		1.6E-01 1.5E-05	n c	
2.12.01	2 0.02 00 0	0.02 02	P		1	0.	1	Aminophenol, m-	591-27-5	5.1E+03	n	6.6E+04	n					1.6E+03 n		6.1E-01	n	
			X		1	0.		Aminophenol, o-	95-55-6	2.5E+02	n	3.3E+03	n					7.9E+01 n		3.0E-02	n	
		2.0E-02 2.5E-03	<u> </u>		1	0.		Aminophenol, p-	123-30-8 33089-61-1	1.3E+03 1.6E+02	n	1.6E+04 2.1E+03	n					4.0E+02 n 8.2E+00 n		1.5E-01 4.2E+00	n n	
1			5.0E-01	ΙV	1			Ammonia	7664-41-7					5.2E+02	n	2.2E+03	n					
			X		1	0.	1	Ammonium Picrate	131-74-8	1.3E+02	n	1.6E+03	n					4.0E+01 n		1.9E-01	n	
1		2.0E-01	3.0E-03	x v	1		1.4E+04	Ammonium Sulfamate Amyl Alcohol, tert-	7773-06-0 75-85-4	1.6E+04 8.2F+01	n n	2.3E+05 3.4E+02	nm n	3.1F+00	n	1.3E+01		4.0E+03 n 6.3E+00 n		1.3F-03	n	
		7.0E-03	P 1.0E-03		1	0.		Aniline	62-53-3	9.5E+01	C**	4.0E+02		1.0E+00		4.4E+00		1.3E+01 c*		4.6E-03	c*	
4.0E-02	Р		Χ		1	0.	1	Anthraquinone, 9,10-	84-65-1	1.4E+01	C**	5.7E+01	c*	0.45.04		4.05.00		1.4E+00 c*	0.05.00	1.4E-02	C*	0.75.04
1		4.0E-04 5.0E-04	I 3.0E-04 H	А	0.15 0.15			Antimony (metallic) Antimony Pentoxide	7440-36-0 1314-60-9	3.1E+01 3.9E+01	n n	4.7E+02 5.8E+02	n n	3.1E-01	n	1.3E+00		7.8E+00 n 9.7E+00 n	6.0E+00	3.5E-01	n	2.7E-01
			Н		0.15	5		Antimony Tetroxide	1332-81-6	3.1E+01	n	4.7E+02	n					7.8E+00 n				
4.55.00	I 4.3E-03 I	3.0E-04	2.0E-04 I 1.5E-05		0.15	5 0.0	10	Antimony Trioxide	1309-64-4 7440-38-2	2.8E+05 6.8E-01	nm c*R	1.2E+06 3.0F+00		2.1E-01 6.5E-04	n c*	8.8E-01 2.9E-03	n c*	5.2F-02 c	1.0E+01	1.5E-03		2.9E-01
1.5E+00	1 4.3E-03 I		C 5.0E-05		1	0.0	13	Arsenic, Inorganic Arsine	7784-42-1	2.7E-01	n	4.1E+00	n	5.2E-02	n n	2.9E-03 2.2E-01		7.0E-02 n	1.0E+01	1.5E-03	С	2.9E-01
1					1			Asbestos (units in fibers)	1332-21-4										7.0E+06(G)			
2.3E-01		3.6E-02 3.5E-02	0		1	0.		Asulam Atrazine	3337-71-1	2.3E+03 2.4F+00	n	3.0E+04 1.0F+01	n					7.2E+02 n 3.0F-01 c	2.05.00	1.8E-01 2.0E-04	n c	4.05.00
	C 2.5E-04 C	3.5E-02	1		1	0.		Aurazine	1912-24-9 492-80-8	6.2E-01	C C	2.6E+00	C	1.1E-02	С	4.9E-02		3.0E-01 c 7.8E-02 c	3.0E+00	7.1E-04	C	1.9E-03
0.02 0.		4.0E-04	1		1	0.	1	Avermectin B1	65195-55-3	2.5E+01	n	3.3E+02	n					8.0E+00 n		1.4E+01	n	
4.45.04	I 3.1E-05 I	3.0E-03	A 1.0E-02	A V	1	0.	1	Azinphos-methyl	86-50-0 103-33-3	1.9E+02 5.6E+00	n	2.5E+03 2.6E+01	n	1.0E+01		4.4E+01		5.6E+01 n		1.7E-02 9.3E-04	n	
1.1E-01	1 3.1E-05 I	1.0F+00	P 7.0E-06		1	0.	1	Azobenzene Azodicarbonamide	123-77-3	8.6E+00	n	4.0E+01	c n	9.1E-02 7.3E-03	c n	4.0E-01 3.1E-02		1.2E-01 c 2.0E+04 n		9.3E-04 6.8E+00	c n	
		2.0E-01	I 5.0E-04		0.07			Barium	7440-39-3	1.5E+04	n	2.2E+05	nm	5.2E-01	n	2.2E+00	n	3.8E+03 n	2.0E+03	1.6E+02	n	8.2E+01
		5.0E-03 5.0E-02	0	V	1	0.	1	Benfluralin Benomyl	1861-40-1 17804-35-2	3.9E+02 3.2E+03	n	5.8E+03 4.1E+04	n					2.8E+01 n 9.7E+02 n		9.4E-01 8.5E-01	n	
		2.0E-02	i		1	0.		Bensulfuron-methyl	83055-99-6	3.2E+03 1.3E+04	n n	4.1E+04 1.6E+05	nm					3.9E+03 n		8.5E-01 1.0E+00	n n	
		3.0E-02	I		1	0.	1	Bentazon	25057-89-0	1.9E+03	n	2.5E+04	n					5.7E+02 n		1.2E-01	n	
	P I 7.8E-06 I	1.0E-01 4.0E-03	I 3.0E-02	V V	1		1.2E+03	Benzaldehyde Benzene	100-52-7 71-43-2	1.7E+02 1.2E+00	c*	8.2E+02 5.1E+00	c*	3.6E-01	c*	1.6E+00		1.9E+01 c 4.6E-01 c*	5.0E+00	4.1E-03 2.3E-04	c*	2.6E-03
	X X		X 3.0E-02		1	0.		Benzenediamine-2-methyl sulfate, 1,4-	6369-59-1	5.4E+00	c**	2.3E+01	C*	3.02-01	·	1.0L+00	-	7.8E-01 c**	J.0L+00	2.3E-04 2.2E-04	C**	2.01-03
		1.0E-03	P	V	1		1.3E+03	Benzenethiol	108-98-5	7.8E+01	n	1.2E+03	n					1.7E+01 n		1.1E-02	n	
2.3E+02	I 6.7E-02 I	3.0E-03 4.0E+00			M 1	0. 0.		Benzidine Benzoic Acid	92-87-5 65-85-0	5.3E-04 2.5E+05	C nm	1.0E-02 3.3E+06	C nm	1.5E-05	С	1.8E-04		1.1E-04 c 7.5E+04 n		2.8E-07 1.5E+01	C n	
1.3E+01	1			V	1		3.2E+02	Benzotrichloride	98-07-7	5.3E-02	C	2.5E-01	С					3.0E-03 C		6.6E-06	C	
			P 4.05.00	D):	1	0.		Benzyl Alcohol	100-51-6	6.3E+03	n	8.2E+04	n			0.55		2.0E+03 n		4.8E-01	n	
1.7E-01	I 4.9E-05 C 2.4E-03 I		P 1.0E-03 I 2.0E-05		0.00	7	1.5E+03	Benzyl Chloride Beryllium and compounds	100-44-7 7440-41-7	1.1E+00 1.6E+02	c*	4.8E+00 2.3F+03	c*	5.7E-02 1.2E-03	c*	2.5E-01 5.1E-03		8.9E-02 c* 2.5E+01 n	4.0E+00	9.8E-05 1.9E+01	c* n	3.2E+00
	2.7L=03 T	9.0E-03	P 2.0L-03		1	0.	1	Bifenox	42576-02-3	5.7E+02	n	7.4E+03	n	1.22-03		J. 1L=03		1.0E+02 n	4.0L100	7.6E-01	n	J.ZL100
0.07.55		1.5E-02	1	v v	1	0.	1	Biphenthrin	82657-04-3	9.5E+02	n	1.2E+04	n	4.05.5		4.05		3.0E+02 n		1.4E+03	n	
8.0E-03	1	5.0E-01 4.0E-02	I 4.0E-04	X V	1		1 0F+03	Biphenyl, 1,1'- Bis(2-chloro-1-methylethyl) ether	92-52-4 108-60-1	4.7E+01 3.1E+03	n ns	2.0E+02 4.7E+04	n ns	4.2E-01	n	1.8E+00		8.3E-01 n 7.1E+02 n		8.7E-03 2.6E-01	n n	
		3.0E-03	P	•	1	0.	1.02703	Bis(2-chloroethoxy)methane	111-91-1	1.9E+02	n	2.5E+03	n					5.9E+01 n		1.3E-02	n	
	I 3.3E-04 I			V	1		5.1E+03	Bis(2-chloroethyl)ether	111-44-4	2.3E-01	С	1.0E+00	С	8.5E-03	С	3.7E-02		1.4E-02 c		3.6E-06	С	
2.2E+02	I 6.2E-02 I	5.0E-02	1	V	1	0.		Bis(chloromethyl)ether Bisphenol A	542-88-1 80-05-7	8.3E-05 3.2E+03	C n	3.6E-04 4.1E+04	C n	4.5E-05	С	2.0E-04		7.2E-05 c 7.7E+02 n		1.7E-08 5.8E+01	c n	
		2.0E-01	I 2.0E-02		1			Boron And Borates Only	7440-42-8	1.6E+04	n	2.3E+05		2.1E+01	n	8.8E+01	n	4.0E+03 n		1.3E+01	n	
		2.0E+00	P 2.0E-02	PV	1			Boron Trichloride	10294-34-5	1.6E+05	nm	2.3E+06	nm	2.1E+01	n	8.8E+01		4.2E+01 n				
7.0E-01	1	4.0E-02 4.0E-03	C 1.3E-02	CV	1			Boron Trifluoride Bromate	7637-07-2 15541-45-4	3.1E+03 9.9E-01	n c	4.7E+04 4.7E+00	n c	1.4E+01	n	5.7E+01	n	2.6E+01 n 1.1E-01 c	1.0F+01	8.5E-04	С	7.7E-02
	X 6.0E-04 X		•	V	1			Bromo-2-chloroethane, 1-	107-04-0	2.6E-02	С	1.1E-01	С	4.7E-03	С	2.0E-02		7.4E-03 c	1.02.01	2.1E-06	С	2.02
		3.0E-04	X	V	1		9.0E+02	Bromo-3-fluorobenzene, 1-	1073-06-9	2.3E+01	n	3.5E+02	n					4.9E+00 n		4.7E-03	n	

Key: I = IRIS; P = PPRTV; O = OPP; A = ATS	SDR; C = Cal EPA; X =	= PPRTV Screenir	ng Level; H = HEA	ST; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V limit exceeded; s = Csat exceed		RBA applied ; c =	cancer; n = noncar	ncer; * = where: n SL	< 100X c SL; ** =	where n SL < 10X c	SL; SSL values	are based o	n DAF=1; m	= ceiling
Toxicity and Ch	nemical-specific Inform	nation		Contaminant	icu.			Screening	Levels			Protection of		
SFO e IUR e RfD	k RfC k v		C _{eat}			Resident Soil	Industrial Soil	Resident Air	Industrial Air	Tapwater	MCL	Risk-based SSI		based SSI
(mg/kg-day) ⁻¹ y (ug/m ³) ⁻¹ y (mg/kg-day)		mutagen GIABS		Analyte	CAS No.		ey (mg/kg)			key (ug/L) key	(ug/L)	(mg/kg)		ng/kg)
1 1 1 1 1	X V	1		Bromo-4-fluorobenzene, 1-	460-00-4		n 3.5E+02	ns	, , ,	4.6E+00 n	(3,)	4.4E-03	n `	5 5/
		1	0.1	Bromoacetic acid	79-08-3						6.0E+01(G)			2E-02
8.0E-03	I 6.0E-02 I V 4.0E-02 X V	1		P Bromobenzene B Bromochloromethane	108-86-1 74-97-5	2.9E+02 1.5E+02	n 1.8E+03 n 6.3E+02	ns 6.3E+01 n 4.2E+01	n 2.6E+02 n 1.8E+02	n 6.2E+01 n n 8.3E+01 n		4.2E-02 2.1E-02	n	
6.2E-02 3.7E-05 C 2.0E-02	1 V	1		Promodichloromethane	75-27-4		c 1.3E+00	c 7.6E-02	c 3.3E-01	c 1.3E-01 c	8.0E+01(G)	3.6E-05	c 2.2	2E-02
7.9E-03 I 1.1E-06 I 2.0E-02	I V	1	9.2E+0	Bromoform	75-25-2	1.9E+01	c* 8.6E+01	c 2.6E+00	c 1.1E+01	c 3.3E+00 c	8.0E+01(G)	8.7E-04		1E-02
1.4E-03 5.0E-03	I 5.0E-03 I V	1	3.6E+0	Bromomethane Bromophos	74-83-9 2104-96-3	6.8E+00 3.9E+02	n 3.0E+01 n 5.8E+03	n 5.2E+00	n 2.2E+01	n 7.5E+00 n 3.5E+01 n		1.9E-03 1.5E-01	n n	
5.0E-03	1.0E-01 A V	1	9.7F+0	Promopropane. 1-	106-94-5	1 1 1 .	n 5.8E+03 n 9.4F+02	n 1.0E+02	n 4.4E+02	n 2.1E+02 n		6.4E-02	n n	
	0	1	0.1	Bromoxynil	1689-84-5	5.3E+00	c 2.2E+01	С		6.1E-01 c		5.2E-04	C	
	O V 2.0E-03 I V	1	0.75.0	Bromoxynil Octanoate	1689-99-2 106-99-0		c 3.2E+01 c* 3.3F-01	c c* 9.4F-02		2.4E-01 c		2.1E-03	c c*	
	2.0E-03 I V	1	0.7E+0	P Butadiene, 1,3- Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6	7.6E-02 1.9E+03	o* 3.3E-01 n 2.5E+04	n 9.4E-02	c* 4.1E-01	c* 7.1E-02 c* 4.5E+02 n		3.9E-05 4.2E-01	n C	
1.0E-01	I V	1	7.6E+0	Butanol, N-	71-36-3	7.8E+03 I	ns 1.2E+05	nms		2.0E+03 n		4.1E-01	n	
	P 3.0E+01 P V	1	2.1E+0	Butyl alcohol, sec-	78-92-2		ms 1.5E+06	nms 3.1E+04	n 1.3E+05	n 2.4E+04 n		5.0E+00	n	
5.0E-02 2.0E-04 C 5.7E-08 C	I V	1	0.1	Butylate Butylated hydroxyanisole	2008-41-5 25013-16-5	0.02.00	n 5.8E+04 c 1.1E+04	c 4.9E+01	c 2.2E+02	4.6E+02 n c 1.5E+02 c		4.5E-01 2.9E-01	n C	
3.6E-03 P 3.0E-01	Р	1	0.1	Butylated hydroxytoluene	128-37-0	1.5E+02	c 6.4E+02	C 4.52.101		3.4E+00 c		1.0E-01	c	
5.0E-02	P V	11		Butylbenzene, n-	104-51-8		ns 5.8E+04	ns		1.0E+03 n		3.2E+00	n	
1.0E-01 1.0E-01	X V	1		2 Butylbenzene, sec- 2 Butylbenzene, tert-	135-98-8 98-06-6		ns 1.2E+05 ns 1.2E+05	nms nms		2.0E+03 n 6.9E+02 n		5.9E+00 1.6E+00	n n	
2.0E-02	A	1	0.1	Cacodylic Acid	75-60-5	1.3E+03	n 1.6E+04	n		4.0E+02 n		1.1E-01	n	
1.8E-03 I 1.0E-03	I 1.0E-05 A	0.025	0.001	Cadmium (Diet)	7440-43-9	7.1E+01	n 9.8E+02	n	** 0		5.05.55			05.07
1.8E-03 I 5.0E-04 5.0E-01	I 1.0E-05 A I 2.2E-03 C	0.05 1	0.001 0.1	Cadmium (Water) Caprolactam	7440-43-9 105-60-2	3.1F+04	n 4.0E+05		c** 6.8E-03 n 9.6E+00	c** 9.2E+00 n n 9.9E+03 n	5.0E+00	6.9E-01 2.5E+00	n 3.8	8E-01
1.5E-01 C 4.3E-05 C 2.0E-03	1	1	0.1	Captafol	2425-06-1		* 1.5E+01	c 6.5E-02	c 2.9E-01	c 4.0E-01 c*		7.1E-04	C*	
2.3E-03 C 6.6E-07 C 1.3E-01	!	1	0.1	Captan	133-06-2		* 1.0E+03	c 4.3E+00	c 1.9E+01	c 3.1E+01 c*		2.2E-02	C*	
1.0E-01 5.0E-03	1	1 1	0.1	Carbaryl Carbofuran	63-25-2 1563-66-2	6.3E+03 3.2E+02	n 8.2E+04 n 4.1E+03	n n		1.8E+03 n 9.4E+01 n	4.0E+01	1.7E+00 3.7E-02	n n 1.6	6E-02
1.0E-01	I 7.0E-01 I V	1		2 Carbon Disulfide	75-15-0		ns 3.5E+03	ns 7.3E+02	n 3.1E+03	n 8.1E+02 n		2.4E-01	n	02 02
7.0E-02 6.0E-06 4.0E-03	I 1.0E-01 I V	11		Carbon Tetrachloride	56-23-5	6.5E-01	c 2.9E+00	c 4.7E-01	c 2.0E+00	c 4.6E-01 c	5.0E+00	1.8E-04		9E-03
1.0E-02	1.0E-01 P V	1	5.9E+0 0.1	3 Carbonyl Sulfide Carbosulfan	463-58-1 5528 5-1 4-8	6.7E+01 6.3E+02	n 2.8E+02 n 8.2E+03	n 1.0E+02	n 4.4E+02	n 2.1E+02 n 5.1E+01 n		5.1E-01 1.2E+00	n n	
1.0E-02	i	1	0.1	Carboxin	5234-68-4	6.3E+03	n 8.2E+04	n		1.9E+03 n		1.0E+00	n	
	9.0E-04 I	1		Ceric oxide	1306-38-3		m 5.4E+06	nm 9.4E-01	n 3.9E+00	n				
1.0E-01 1.5E-02	I V	1	0.1	Chloral Hydrate Chloramben	302-17-0 133-90-4	7.8E+03 9.5E+02	n 1.2E+05 n 1.2E+04	nm n		2.0E+03 n 2.9E+02 n		4.0E-01 7.0E-02	n n	
	•	· · ·		Chloramines, Organic	E701235						4.0E+03(G)			
4.0E-01 H 3.5E-01 I 1.0E-04 I 5.0E-04	I 7.0F-04 I V	1	0.1 0.04	Chloranil	118-75-2	1.3E+00 1.7F+00	c 5.7E+00 c* 7.7E+00	c c* 2.8F-02	c* 1.2F-01	1.8E-01 c	2.0F+00	1.5E-04	C	7E 04
3.5E-01 1.0E-04 5.0E-04 1.0E+01 4.6E-03 C 3.0E-04	1 7.0E-04 I V	1	0.04	Chlordane (technical mixture) Chlordecone (Kepone)	12789-03-6 143-50-0		c 2.3E-01	c 6.1E-04	c 2.7E-03	c* 2.0E-02 c* c 3.5E-03 c	2.0E+00	2.7E-03 1.2E-04	C* 2.1	7E-01
7.0E-04	Ä	1	0.1	Chlorfenvinphos	470-90-6	4.4E+01	n 5.7E+02	n	0 2.72 00	1.1E+01 n		3.1E-02	n	
	0	11	0.1	Chlorimuron, Ethyl-	90982-32-4	5.7E+03	n 7.4E+04	n 1.5E-01	- CAF 04	1.8E+03 n	4.05+02(0)	6.0E-01	n o o	DE+00
	I 1.5E-04 A V I 2.0E-04 I V	1	2.8E+0	Chlorine Chlorine Dioxide	7782-50-5 10049-04-4	1.8E-01 2.3E+03	n 7.8E-01 n 3.4E+04	n 2.1E-01	n 6.4E-01 n 8.8E-01	n 3.0E-01 n n 4.2E-01 n	4.0E+03(G) 8.0E+02(G)	1.5E-04	n 2.0	JE+00
3.0E-02	1	1		Chlorite (Sodium Salt)	7758-19-2	2.3E+03	n 3.5E+04	n		6.0E+02 n	1.0E+03			
3.0E-04 I 2.0E-02	5.0E+01 I V H 2.0E-02 I V	1		R Chloro-1,1-difluoroethane, 1- R Chloro-1,3-butadiene, 2-	75-68-3 126-99-8	5.4E+04 I 1.0E-02	ns 2.3E+05 c 4.4E-02	nms 5.2E+04 c 9.4E-03	n 2.2E+05	n 1.0E+05 n c 1.9E-02 c		5.2E+01 9.8E-06	n c	
3.0E-04 T 2.0E-02 4.6E-01 H	11 Z.UE-UZ 1 V	1	7.9E+0 0.1	Chloro-2-methylaniline HCl, 4-	3165-93-3	1.0E-02 1.2E+00	c 4.4E-02 c 5.0E+00	c 9.4E-03	c 4.1E-02	c 1.9E-02 c 1.7E-01 c		9.8E-06 1.5E-04	C	
1.0E-01 P 7.7E-05 C 3.0E-03	X	1	0.1	Chloro-2-methylaniline, 4-	95-69-2	5.4E+00	c* 2.3E+01	c 3.6E-02	c 1.6E-01	c 7.0E-01 c*		4.0E-04	c*	
2.7E-01 X	V	1	1.2E+0 0.1	Chloroacetaldehyde, 2- Chloroacetic Acid	107-20-0 79-11-8	2.6E+00	c 1.2E+01	С		2.9E-01 c	6.0E+01(G)	5.8E-05	C 1.	2E-02
	3.0E-05 I	1	0.1	Chloroacetophenone, 2-	532-27-4	4.3E+04	n 1.8E+05	nm 3.1E-02	n 1.3E-01	n	0.0L+01(G)		1.4	21-02
2.0E-01 P 4.0E-03	1	1	0.1	Chloroaniline, p-	106-47-8	2.72.00	* 1.1E+01	С		3.7E-01 c		1.6E-04	С	
2.0E-02 1.0E-01	I 5.0E-02 P V	1	7.6E+0 0.1	Chlorobenzene Chlorobenzene sulfonic acid, p-	108-90-7 98-66-8	2.8E+02 6.3F+03	n 1.3E+03 n 8.2F+04	ns 5.2E+01	n 2.2E+02	n 7.8E+01 n 2.0F+03 n	1.0E+02	5.3E-02 4.7F-01	n 6.8	8E-02
1.1E-01 C 3.1E-05 C 2.0E-02	Î	1	0.1	Chlorobenzilate	510-15-6	4.9E+00	c 2.1E+01	c 9.1E-02	c 4.0E-01	c 3.1E-01 c		1.0E-03	C	
3.0E-02	X	1	0.1	Chlorobenzoic Acid, p-	74-11-3	1.9E+03	n 2.5E+04	n		5.1E+02 n		1.3E-01	n	
	P 3.0E-01 P V	1	2.9E+0 7.3E+0	Chlorobenzotrifluoride, 4- Chlorobutane, 1-	98-56-6 109-69-3		o* 9.6E+00 ns 4.7E+04	c 3.3E-01	c 1.4E+00	c 6.5E-01 c* 6.4E+02 n		2.3E-03 2.6F-01	c* n	
4.0E-02	5.0E+01 I V	1		Chlorodifluoromethane	75-45-6		ns 2.1E+05	nms 5.2E+04	n 2.2E+05	n 1.0E+05 n		4.3E+01	n	
2.0E-02	P V	1		Chloroethanol, 2-	107-07-3	1.6E+03	n 2.3E+04	n		4.0E+02 n	0.05.000	8.1E-02	n	05.05
3.1E-02 C 2.3E-05 I 1.0E-02	I 9.8E-02 A V 9.0E-02 I V	1		B Chloroform B Chloromethane	67-66-3 74-87-3	3.2E-01 1.1E+02	c 1.4E+00 n 4.6E+02	c 1.2E-01 n 9.4E+01	c 5.3E-01 n 3.9E+02	c 2.2E-01 c n 1.9E+02 n	8.0E+01(G)	6.1E-05 4.9E-02	c 2.2	2E-02
2.4E+00 C 6.9E-04 C	V	1	9.3E+0	B Chloromethyl Methyl Ether	107-30-2		c 8.9E-02	c 4.1E-03	c 1.8E-02	c 6.5E-03 c		1.4E-06	C	
	P 1.0E-05 X	1	0.1	Chloronitrobenzene, o-	88-73-3	1.8E+00	c 7.7E+00	c 1.0E-02	n 4.4E-02	n 2.4E-01 c		2.2E-04	С	
6.0E-02 P 7.0E-04 5.0E-03	P 2.0E-03 P	1	0.1 2.7E+0	Chloronitrobenzene, p-	100-00-5 95-57-8	9.0E+00 c	** 3.8E+01 n 5.8E+03	c* 2.1E+00 n	n 8.8E+00	n 1.2E+00 c* 9.1E+01 n		1.1E-03 8.9E-02	c* n	
	4.0E-04 C V	1	6.2E+0	Chloropicrin	76-06-2	2.0E+00	n 8.2E+00	n 4.2E-01	n 1.8E+00	n 8.3E-01 n		2.5E-04	n	
1.7E-02 C 1.5E-02	1	11	0.1	Chlorothalonil	1897-45-6	3.2E+01	* 1.4E+02	c*		4.0E+00 c*		9.0E-03	c*	
2.0E-02 2.0E-02	I V	1		Chlorotoluene, o- Chlorotoluene, p-	95-49-8 106-43-4		ns 2.3E+04 ns 2.3E+04	ns ns		2.4E+02 n 2.5E+02 n		2.3E-01 2.4E-01	n n	
2.4E+02 C 6.9E-02 C		1	0.1	Chlorozotocin	54749-90-5	2.3E-03	c 9.6E-03	c 4.1E-05	c 1.8E-04	c 3.2E-04 c		7.1E-08	C	
5.0E-02	0	1	0.1	Chlorpropham	101-21-3	3.2E+03	n 4.1E+04	n		7.1E+02 n		6.4E-01	n	
1.0E-03 1.0E-02	A H	1	0.1 0.1	Chlorpyrifos Chlorpyrifos Methyl	2921-88-2 5598-13-0		n 8.2E+02 n 8.2E+03	n n		8.4E+00 n 1.2F+02 n		1.2E-01 5.4E-01	n n	
	0	1	0.1	Chlorsulfuron	64902-72-3		n 4.1E+04	n		9.9E+02 n		8.3E-01	n	

Key: I = IRIS	S; P = PPRTV; O = OPP; A = A	TSDR; C = Cal E	EPA; X = PPR1	TV Screenin	ng Level; H = H	AST; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; limit exceeded; s = Csat exce		RBA applied ; c =	= cance	er; n = noncanc	er; * = where:	n SL < 1	00X c SL; ** =	where n SL < 10X	(c SL; SSL value	s are based o	n DAF=1	; m = ceiling
	Toxicity and	Chemical-specifi	ic Information			Contaminant	eueu.				Scree	ening Lev	els			Protection of		
SEO	k k k RfD.	k RfCi	k v		C,			Resident Soil		Industrial Soil	Resident	Δir	Industrial Air	Tapwater	MCL	Risk-based SSL		MCL-based SSL
(mg/kg-day)			v I mutage	en GIABS		g) Analyte	CAS No.		key		key (ug/m ³			key (ug/L) k		(mg/kg)	kev	(mg/kg)
(3 3),	1.0E-02	1	1711 9	1	0.1	Chlorthal-dimethyl	1861-32-1	6.3E+02	n n	8.2E+03	n	' ' '	, ,	1.2E+02	n ()	1.5E-01	n n	(3 3)
	8.0E-04	Н		1	0.1	Chlorthiophos	60238-56-4	5.1E+01	n	6.6E+02	n			2.8E+00	n	7.3E-02	n	
5.05.04	1.5E+00	1		0.013		Chromium(III), Insoluble Salts	16065-83-1		nm		nm	_	4.55.04	2.2E+04	n	4.0E+07	n	
5.0E-01	C 8.4E-02 G 3.0E-03	I 1.0E-04	I M	0.025 0.013		Chromium(VI) Chromium, Total	18540-29-9 7440-47-3	3.0E-01	С	6.3E+00	c 1.2E-0	5 с	1.5E-04	c 3.5E-02	1.0F+02	6.7E-04	С	1.8E+05
	1.3E-02	1		1	0.1	Clofentezine	74115-24-5	8.2E+02	n	1.1E+04	n			2.3E+02	n 1.0E102	1.4E+01	n	1.02.100
	9.0E-03 P 3.0E-04	P 6.0E-06		1		Cobalt	7440-48-4	2.3E+01	n	3.5E+02	n 3.1E-0		1.4E-03	c* 6.0E+00	n	2.7E-01	n	
	6.2E-04 I 4.0E-02	ш	V M	1		Coke Oven Emissions	E649830 7440-50-8	3.1E+03	n	4.7E+04	1.6E-0	3 с	2.0E-02	8.0E+02	n 1.3E+03	2.8E+01	n	4.6E+01
	5.0E-02	I 6.0E-01	С	1	0.1	Copper Cresol, m-	108-39-4	3.1E+03 3.2E+03	n		n 6.3E+0	2 n	2.6E+03	n 9.3E+02	n 1.3E+03	7.4E-01	n	4.00-01
	5.0E-02	I 6.0E-01	С	1	0.1	Cresol, o-	95-48-7	3.2E+03	n	4.1E+04	n 6.3E+0	2 n	2.6E+03	n 9.3E+02	n	7.5E-01	n	
	1.0E-01	A 6.0E-01	С	1	0.1	Cresol, p-	106-44-5	6.3E+03	n		n 6.3E+0	2 n	2.6E+03	n 1.9E+03	n	1.5E+00	n	
	1.0E-01 1.0E-01	A 6.0E-01	C	1	0.1 0.1	Cresol, p-chloro-m- Cresols	59-50-7 1319-77-3	6.3E+03 6.3E+03	n n	8.2E+04 8.2E+04	n 6.3E+0	2 n	2.6E+03	1.4E+03 n 1.5E+03	n	1.7E+00 1.3E+00	n n	
1.9E+00	H 1.0E-03	P	V	1	1.7E		123-73-9	3.7E-01	С	1.7E+00	C		2.02.00	4.0E-02	c	8.2E-06	c	
	1.0E-01	I 4.0E-01	I V	1		02 Cumene	98-82-8		ns		ns 4.2E+0		1.8E+03	n 4.5E+02	n	7.4E-01	n	
2.2E-01 8.4E-01	C 6.3E-05 C H 2.0E-03	ш		1 1	0.1	Cuprerion	135-20-6	2.5E+00 6.5E-01	С	1.0E+01 2.7E+00	c 4.5E-0	2 с	1.9E-01	c 3.5E-01 8.8E-02	C	6.1E-04 4.1E-05	С	
0.4E-UI	11 2.0E-03	11			0.1	Cyanazine Cyanides	21725-46-2	0.00-01	С	2.7E+00	·			0.0E-UZ		4.15-05	С	
	1.0E-03	I		1		~Calcium Cyanide	592-01-8	7.8E+01	n	1.2E+03	n			2.0E+01	n			
	5.0E-03	1 0 05 5	0.1/	1		~Copper Cyanide	544-92-3	3.9E+02	n	5.8E+03	n		0.55.05	1.0E+02	n 0.05.05	4.55.05		0.05.00
	6.0E-04 1.0E-03	I 8.0E-04	G V	1	9.5E	05 ~Cyanide (CN-) ~Cyanogen	57-12-5 460-19-5	2.3E+01 7.8E+01	n n	1.5E+02 1.2E+03	n 8.3E-0	1 n	3.5E+00	n 1.5E+00 2.0E+01	n 2.0E+02	1.5E-02	n	2.0E+00
	9.0E-02	i	V	1		~Cyanogen Bromide	506-68-3	7.0E+03	n		nm			1.8E+03	n			
	5.0E-02	1	V	1		~Cyanogen Chloride	506-77-4	3.9E+03	n	5.8E+04	n			1.0E+03	n			
	6.0E-04 2.0F-03	I 8.0E-04	I V	1	1.0E	07 ~Hydrogen Cyanide ~Potassium Cyanide	74-90-8 151-50-8	2.3E+01 1.6F+02	n n	1.5E+02 2.3F+03	n 8.3E-0	1 n	3.5E+00	n 1.5E+00 4.0E+01	n	1.5E-02	n	
	2.0E-03 5.0E-03			0.04		~Potassium Cyanide ~Potassium Silver Cyanide	151-50-8 506-61-6	1.6E+02 3.9E+02	n	5.8E+03	n			4.0E+01 8.2E+01	n			
	1.0E-01	i		0.04		~Silver Cyanide	506-64-9	7.8E+03	n	1.2E+05	nm			1.8E+03	n			
	1.0E-03	ı		1		~Sodium Cyanide	143-33-9	7.8E+01	n	1.2E+03	n			2.0E+01	n 2.0E+02			
	2.0E-04 2.0E-04	P X	V	1		~Thiocyanates ~Thiocyanic Acid	E1790664 463-56-9	1.6E+01 1.6E+01	n n	2.3E+02 2.3E+02	n n			4.0E+00 4.0E+00	n			
	5.0E-02	Ì	•	1		~Zinc Cyanide	557-21-1	3.9E+03	n	5.8E+04	n			1.0E+03	n			
		6.0E+00	I V	1		02 Cyclohexane	110-82-7		ns		ns 6.3E+0	3 n	2.6E+04	n 1.3E+04	n	1.3E+01	n	
2.0E-02	X 2.0E-02 5.0E+00	X I 7.0E-01	D V	1 1	0.1 5.1E	Cyclohexane, 1,2,3,4,5-pentabromo-6-chloro-	87-84-3 108-94-1	2.7E+01 2.8F+04	c* ns	1.1E+02 1.3F+05	c nms 7.3F+0	2 n	3.1F+03	2.8E+00 n 1.4F+03	C	1.6E-02 3.4F-01	n c	
	5.0E-03	P 1.0E+00		1	2.8E		110-83-8	3.1E+02	ns		ns 1.0E+0		4.4E+03	n 7.0E+01	n	4.6E-02	n	
	2.0E-01	1	V	1	2.9E	05 Cyclohexylamine	108-91-8	1.6E+04	n		nm			3.8E+03	n	1.0E+00	n	
	2.5E-02 1.0F-03	0		1	0.1	Cyfluthrin Cyhalothrin	68359-37-5	1.6E+03 6.3F+01	n		n			1.2E+02 2.0F+01	n -	3.1E+01 1.4F+01	n	
	5.0E-01	0		1	0.1 0.1	Cyromazine	68085-85-8 66215-27-8	3.2E+04	n n		n nm			9.9E+03	n n	2.5E+00	n n	
2.4E-01	I 6.9E-05 C 3.0E-05	X		1	0.1	DDD, p,p'- (DDD)	72-54-8	1.9E+00	n		c** 4.1E-0	2 c	1.8E-01	c 3.2E-02 c	**	7.5E-03	c**	
3.4E-01	I 9.7E-05 C 3.0E-04	X	V	1		DDE, p,p'-	72-55-9	2.0E+00	C*		c* 2.9E-0		1.3E-01	c 4.6E-02	c	1.1E-02	С	
3.4E-01	1 9.7E-05 1 5.0E-04 3.0E-02	- 		1	0.03	DDT Dalapon	50-29-3 75-99-0	1.9E+00 1.9E+03	C*	8.5E+00 2.5E+04	c* 2.9E-0	2 c	1.3E-01	c 2.3E-01 c	n 2.0F+02	7.7E-02 1.2F-01	c* n	4.1E-02
1.8E-02	C 5.1E-06 C 1.5E-01	i		1	0.1	Daminozide	1596-84-5	3.0E+01	c	1.3E+02	c 5.5E-0	1 с	2.4E+00	c 4.3E+00	c 2.02.02	9.5E-04	c	
7.0E-04	I 7.0E-03	1		11	0.1	Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'- (BDE-209)	1163-19-5	4.4E+02	n	3.3E+03	C**			1.1E+02 c	**	6.2E+01	C**	
1.2E-03	4.0E-05 I 6.0E-01	-		1	0.1 0.1	Demeton Di(2-ethylhexyl)adipate	8065-48-3 103-23-1	2.5E+00 4.5E+02	n c*	3.3E+01 1.9E+03	n			4.2E-01 6.5E+01	n c 4.0E+02	4.7E+00	С	2.9E+01
6.1E-02	H			1	0.1	Diallate	2303-16-4	8.9E+00	С	3.8E+01	c			5.4E-01	c 4.0L102	8.0E-04	c	2.02.01
	7.0E-04	A		1	0.1	Diazinon	333-41-5	4.4E+01	n	5.7E+02	n			1.0E+01	n	6.5E-02	n	
8.0E-01	1.0E-02 P 6.0E-03 P 2.0E-04	X P 2.0E-04	V I V M	1	0.05	Dibenzothiophene Dibromo-3-chloropropane, 1,2-	132-65-0 96-12-8	7.8E+02 5.3E-03	n	1.2E+04 6.4E-02	n c 1.7E-0	1 0	2.0E-03	6.5E+01 c 3.3E-04	n c 2.0E-01	1.2E+00 1.4E-07	n	8.6E-05
0.UE-U1	1 0.0E-03 F 2.0E-04	r 2.0E-04	. v IVI	1	0.1	Dibromoacetic acid	631-64-1	J.JL-03	U	0.4L-UZ	U 1.7E-U	+ U	2.02-03	0 0.0E-04	6.0E+01(G)	1.4E-U/	U	1.2E-02
	4.0E-04	Х	V	1	1.6E	02 Dibromobenzene, 1,3-	108-36-1	3.1E+01	n	4.7E+02	ns			5.3E+00	n (=)	5.1E-03	n	
0.45.00	1.0E-02		V	1	0.05	Dibromobenzene, 1,4-	106-37-6	7.8E+02	n	1.2E+04	n			1.3E+02	0.05.01(0)	1.2E-01	n	2.15.02
8.4E-02 2.0E+00	I 2.0E-02 I 6.0E-04 I 9.0E-03	I 9.0E-03	I V	1		02 Dibromochloromethane 03 Dibromoethane, 1,2-	124-48-1 106-93-4	8.3E+00 3.6E-02	C C	3.9E+01 1.6E-01	c 4.7E-0	3 с	2.0E-02	8.7E-01 c 7.5E-03		2.3E-04 2.1E-06	C C	2.1E-02 1.4E-05
2.02.00		4.0E-03		1	2.8E	Dibromomethane (Methylene Bromide)	74-95-3	2.4E+01	n	9.9E+01	n 4.2E+0		1.8E+01	n 8.3E+00	n 0.02 02	2.1E-03	n	
	3.0E-04	P		1	0.1	Dibutyltin Compounds	E1790660	1.9E+01	n		n			6.0E+00		4.55.0:		
	3.0E-02	1		1	0.1	Dicamba Dichloramine	1918-00-9 3400-09-7	1.9E+03	n	2.5E+04	п			5.7E+02	4.0E+03(G)	1.5E-01	n	
	4.2E-03 P		V	1		02 Dichloro-2-butene, 1,4-	764-41-0	2.1E-03	С		c 6.7E-0		2.9E-03	c 1.3E-03	c	6.6E-07	С	
	4.2E-03 P		V	1		02 Dichloro-2-butene, cis-1,4-	1476-11-5	7.4E-03	С	3.2E-02	c 6.7E-0		2.9E-03	c 1.3E-03	С	6.2E-07	С	
5.0E-02	4.2E-03 P I 4.0E-03		V	1	7.6E	02 Dichloro-2-butene, trans-1,4- Dichloroacetic Acid	110-57-6 79-43-6	7.4E-03 1.1E+01	c*	3.2E-02 4.6E+01	c 6.7E-0	4 C	2.9E-03	c 1.3E-03	c 6.0E+01(G)	6.2E-07 3.1E-04	c*	1.2E-02
J.UE-U2	9.0E-02	I 2.0E-01	H V	1		Dichlorobenzene, 1,2-	95-50-1		ns		ns 2.1E+0	2 n	8.8E+02	n 3.0E+02	n 6.0E+01(G)	3.1E-04 3.0E-01	n n	5.8E-01
5.4E-03	C 1.1E-05 C 7.0E-02	A 8.0E-01	I V	1		Dichlorobenzene, 1,4-	106-46-7	2.6E+00	С	1.1E+01	c 2.6E-0		1.1E+00	c 4.8E-01	c 7.5E+01	4.6E-04	С	7.2E-02
4.5E-01	I 3.4E-04 C	V		1	0.1	Dichlorobenzidine, 3,3'-	91-94-1	1.2E+00	С		c 8.3E-0	3 с	3.6E-02	c 1.3E-01 7.8E+01	C	8.2E-04	С	
	9.0E-03 2.0E-01	X I 1.0E-01	X V	1	0.1 8.5E	Dichlorobenzophenone, 4,4'- Dichlorodifluoromethane	90-98-2 75-71-8	5.7E+02 8.7E+01	n n	7.4E+03 3.7E+02	n n 1.0E+0	2 n	4.4E+02	7.8E+01 n 2.0E+02 n	n	4.7E-01 3.0E-01	n n	
5.7E-03	C 1.6E-06 C 2.0E-01	Р	V	1	1.7E	03 Dichloroethane, 1,1-	75-34-3	3.6E+00	С	1.6E+01	c 1.8E+0	0 c	7.7E+00	c 2.8E+00	С	7.8E-04	С	
9.1E-02	I 2.6E-05 I 6.0E-03	X 7.0E-03	PV	1		03 Dichloroethane, 1,2-	107-06-2	4.6E-01	C*		c* 1.1E-0		4.7E-01	c* 1.7E-01 d		4.8E-05	c*	1.4E-03
	5.0E-02 2.0E-03	I 2.0E-01	I V	1		03 Dichloroethylene, 1,1- 03 Dichloroethylene, cis-1,2-	75-35-4 156-59-2	2.3E+02 1.6E+02	n	1.0E+03 2.3E+03	n 2.1E+0	2 n	8.8E+02	n 2.8E+02 3.6E+01	n 7.0E+00 n 7.0E+01	1.0E-01 1.1E-02	n n	2.5E-03 2.1E-02
	2.0E-02	I 4.0E-02	ΧV	1		O3 Dichloroethylene, trans-1,2-	156-60-5	7.0E+01	n		n 4.2E+0	1 n	1.8E+02	n 6.8E+01	n 1.0E+02	2.1E-02	n	3.1E-02
	3.0E-03	I		1	0.1	Dichlorophenol, 2,4-	120-83-2	1.9E+02	n	2.5E+03	n			4.6E+01	n	2.3E-02	n	

Key: I = IRIS	; P = PPRTV; O	= OPP; A = ATS	DR; C = Cal E	PA;	X = PPRTV	Screenin	ng Level;	H = HEAS	T; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V limit exceeded; s = Csat exceed	= volatile; R = R	RBA applied ;	c = can	cer; n = noncan	cer; *	= where: n	SL < 10	0X c SL; **	= whe	re n SL < 10X	c SL; SSL val	ues are based o	n DAF=	=1; m = ceiling
		Toxicity and Ch	emical-specific	c Info	ormation				Imit exceeded; s = Csat exceed Contaminant	iea.					Screeni	ing Leve	els				Protection of	Ground	nd Water SSLs
SFO	k IUR	k RfD	k RfCi	k۱	/			C _{sat}			D :: .0 :				Resident A		Industrial Air			MCL	Risk-based		MCL-based
(mg/kg-day) ⁻¹	6 .0.1	y (mg/kg-day)		e c	l mutagen	GIABS	ABS,	(mg/kg)	Analyte	CAS No.	Resident Soi (mg/kg)	key	Industrial Soil (mg/kg)	key	(ug/m ³)	key	(ug/m ³)	kev	Tapwater (ug/L) ke		SSL (mg/kg)	key	SSL (mg/kg)
(g/itg day)) (ag/)	1.0F-02) (g, /	,	. matagon	1	0.05	(9/1.9)	Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	7.0F+02	n	9.6F+03	n	(49/)	,	(ug/iii)	1.09	1.7F+02 n	7.0E+01	4.5E-02	n	1.8F-02
3.7E-02	P 3.7E-06		P 4.0E-03	1 \	/	1	0.00	1.4E+03	Dichloropropane, 1,2-	78-87-5	2.5E+00	c**	1.1E+01	c**	7.6E-01	C**	3.3E+00	C**		5.0E+00	2.8E-04	c**	1.7E-03
		2.0L-02	Р	١	/	1		1.5E+03	Dichloropropane, 1,3-	142-28-9	1.6E+03	ns	2.3E+04	ns					3.7E+02 n		1.3E-01	n	
1.0F-01	1 405.00	3.0E-03	1		,	1	0.1	4.05.00	Dichloropropanol, 2,3-	616-23-9	1.9E+02 1.8F+00	n	2.5E+03	n c*	7.05.04		0.45.00	c*	5.9E+01 n		1.3E-02 1.7F-04	n	
2.9E-01	I 4.0E-06 I 8.3E-05		I 2.0E-02 I 5.0E-04		,	1	0.1	1.6E+03	Dichloropropene, 1,3- Dichloryos	542-75-6 62-73-7	1.8E+00 1.9E+00	c*	8.2E+00 7.9E+00	C,	7.0E-01 3.4E-02	c*	3.1E+00 1.5E-01	C*	4.7E-01 c* 2.6E-01 c*		8.1E-05	c*	
2.02 01	. 0.02 00		0	•		1	0.1		Dicrotophos	141-66-2	1.9E+00	n	2.5E+01	n	0.12.02		1.02 01		6.0E-01 n		1.4E-04	n	
			P 3.0E-04	X١	/	1		2.6E+02	Dicyclopentadiene	77-73-6	1.3E+00	n	5.4E+00	n	3.1E-01	n	1.3E+00	n	6.3E-01 n		2.2E-03	n	
1.6E+01	1 4.6E-03 3.0E-04		5.0E-03	_		1 1	0.1		Dieldrin Diesel Engine Exhaust	60-57-1 E17136615	3.4E-02	c*	1.4E-01	С	6.1E-04 9.4F-03	С	2.7E-03 4.1F-02	С	1.8E-03 c		7.1E-05	С	
	3.0E-04		P 2.0E-04			1	0.1		Diethanolamine	111-42-2	1.3E+02	n	1.6E+03	n	9.4E-03 2.1E-01	n	4. 1E-02 8.8E-01	n	4.0E+01 n		8.1E-03	n	
			P 1.0E-04			1	0.1		Diethylene Glycol Monobutyl Ether	112-34-5	1.9E+03	n	2.4E+04	n	1.0E-01	n	4.4E-01		6.0E+02 n		1.3E-01	n	
			P 3.0E-04	P \		1	0.1		Diethylene Glycol Monoethyl Ether	111-90-0	3.8E+03	n	4.8E+04	n	3.1E-01	n	1.3E+00	n	1.2E+03 n		2.4E-01	n	
3 55±02	C 1.0E-01	1.02 00	Р		/	1	0.1	1.1E+05	Diethylformamide Diethylstilbestrol	617-84-5 56-53-1	7.8E+01 1.6E-03	n	1.2E+03 6.6E-03	n	2.8F-05	_	1.2E-04	_	2.0E+01 n 5.1E-05 c		4.1E-03 2.8E-05	n	
3.3L102	C 1.0L=01	8.3E-02	0			1	0.1		Difenzoquat	43222-48-6	5.2E+03	n	6.8E+04	n	2.0L=03		1.2L=04		1.7E+03 n		2.6E+02	n	
		2.0E-02	1			1	0.1		Diflubenzuron	35367-38-5	1.3E+03	n	1.6E+04	n					2.9E+02 n		3.3E-01	n	
			4.0E+01			1			Difluoroethane, 1,1-	75-37-6	4.8E+04	ns		nms	4.2E+04	n	1.8E+05		8.3E+04 n		2.8E+01	n	
4 4= 02	C 1.3E-05	C	3.0E+01	x /	,	1		6.9E+02	Difluoropropane, 2,2- Dihydrosafrole	420-45-1 94-58-6	2.4E+04 9.9E+00	ns	1.0E+05 4.5E+01	ns	3.1E+04 2.2E-01	n c	1.3E+05 9.4E-01		6.3E+04 n 3.0E-01 c		1.4E+02 1.9E-04	n c	
4.4E-UZ	U 1.3⊑-U3		7.0E-01	PΙ	,	1		2.3E+03	Diisopropyl Ether	108-20-3	9.9E+00 2.2E+03	n	9.4E+03	ns	7.3E+02		9.4E-01 3.1E+03		1.5E+03 n		3.7E-01	n	
		8.0E-02	1	1	/	1			Diisopropyl Methylphosphonate	1445-75-6	6.3E+03	ns	9.3E+04	ns					1.6E+03 n		4.5E-01	n	
			0			1	0.1		Dimethipin	55290-64-7	1.4E+03	n	1.8E+04	n					4.4E+02 n		9.6E-02	n	
1.6E+00	P	2.2E-03	0			1	0.1		Dimethoate	60-51-5 119-90-4	1.4E+02 3.4E-01	n	1.8E+03 1.4E+00	n					4.4E+01 n 4.7E-02 c		9.9E-03 5.8E-05	n	
1.6E+00 1.7E-03	P	6.0E-02	Р			1	0.1		Dimethoxybenzidine, 3,3'- Dimethyl methylphosphonate	756-79-6	3.4E-01 3.2E+02	c c*	1.4E+00 1.4E+03	C C*					4.7E-02 c 4.6E+01 c*		5.8E-05 9.6E-03	c c*	
4.6E+00	C 1.3E-03					1	0.1		Dimethylamino azobenzene [p-]	60-11-7	1.2E-01	c	5.0E-01	С	2.2E-03	С	9.4E-03	С	5.0E-03 c		2.1E-05	С	
5.8E-01	Н					1	0.1		Dimethylaniline HCl, 2,4-	21436-96-4	9.4E-01	С	4.0E+00	С					1.3E-01 c		1.2E-04	С	
2.0E-01 2.7F-02	P P	2.0E-03 2.0E-03	X		,	1	0.1	0.05.00	Dimethylaniline, 2,4-	95-68-1 121-69-7	2.7E+00 2.6F+01	C**	1.1E+01	C					3.7E-01 c 2.5E+00 c*		2.1E-04 9.0F-04	C	
1.1E+01	P	2.0E-03	1	\	/	1	0.1	8.3E+02	Dimethylaniline, N,N- Dimethylbenzidine, 3,3'-	119-93-7	4.9E-02	C***	1.2E+02 2.1E-01	C ⁻					2.5E+00 c* 6.5E-03 c		9.0E-04 4.3E-05	c*	
1.12.01	•	1.0E-01	P 3.0E-02	1 \	/	1	0.1	1.1E+05	Dimethylformamide	68-12-2	2.6E+03	n	1.5E+04	n	3.1E+01	n	1.3E+02	n	6.1E+01 n		1.2E-02	n	
			X 2.0E-06	X١	/	1			Dimethylhydrazine, 1,1-	57-14-7	5.7E-02	n	2.4E-01	n	2.1E-03	n	8.8E-03	n	4.2E-03 n		9.3E-07	n	
5.5E+02	C 1.6E-01			١	/	1		1.9E+05	Dimethylhydrazine, 1,2-	540-73-8	8.8E-04	С	4.1E-03	С	1.8E-05	С	7.7E-05	С	2.8E-05 c		6.5E-09	С	
		2.0E-02 6.0E-04	1			1	0.1 0.1		Dimethylphenol, 2,4- Dimethylphenol, 2,6-	105-67-9 576-26-1	1.3E+03 3.8E+01	n n	1.6E+04 4.9E+02	n					3.6E+02 n 1.1E+01 n		4.2E-01 1.3E-02	n	
		1.0E-03	i			1	0.1		Dimethylphenol, 3,4-	95-65-8	6.3E+01	n	8.2E+02	n					1.8E+01 n		2.1E-02	n	
4.5E-02	C 1.3E-05			١	/	1		4.7E+02	Dimethylvinylchloride	513-37-1	1.1E+00	С	4.8E+00	С	2.2E-01	С	9.4E-01	С	3.3E-01 c		1.1E-04	С	
		8.0E-05	X			1	0.1		Dinitro-o-cresol, 4,6-	534-52-1	5.1E+00	n	6.6E+01	n					1.5E+00 n		2.6E-03	n	
		2.0E-03 1.0F-04	P			1	0.1		Dinitro-o-cyclohexyl Phenol, 4,6- Dinitrobenzene, 1.2-	131-89-5 528-29-0	1.3E+02 6.3F+00	n n	1.6E+03 8.2F+01	n n					2.3E+01 n 1.9F+00 n		7.7E-01 1.8F-03	n n	
		1.0E-04	i			1	0.1		Dinitrobenzene, 1,3-	99-65-0	6.3E+00	n	8.2E+01	n					2.0E+00 n		1.8E-03	n	
		1.0E-04	Р			1	0.1		Dinitrobenzene, 1,4-	100-25-4	6.3E+00	n	8.2E+01	n					2.0E+00 n		1.8E-03	n	
0.05.04		2.0E-03	1			1	0.1		Dinitrophenol, 2,4-	51-28-5	1.3E+02	n	1.6E+03	n					3.9E+01 n		4.4E-02	n	
6.8E-01 3.1E-01	C 8.9E-05	C 2.0E-03				1 1	0.102		Dinitrotoluene Mixture, 2,4/2,6- Dinitrotoluene, 2,4-	E1615210 121-14-2	8.0E-01 1.7E+00	c*	3.4E+00 7.4E+00	C	3.2E-02		1.4E-01	С	1.1E-01 c 2.4E-01 c		1.5E-04 3.2E-04	C C	
1.5E+00	P 0.5E-05		x			1	0.099		Dinitrotoluene, 2,6-	606-20-2	3.6E-01	c*	1.5E+00	c	0.2L-02	Ü	1.42-01	Ü	4.9E-02 c		6.7E-05	c	
		1.02 01	Х			1	0.006		Dinitrotoluene, 2-Amino-4,6-	35572-78-2	7.7E+00	n	1.1E+02	n					1.9E+00 n		1.5E-03	n	
4.55.04	V		X			1	0.009		Dinitrotoluene, 4-Amino-2,6-	19406-51-0	7.7E+00	n	1.1E+02	n					1.9E+00 n		1.5E-03	n	
4.5E-01	Х	9.0E-04 1.0E-03	X			1	0.1 0.1		Dinitrotoluene, Technical grade Dinoseb	25321-14-6 88-85-7	1.2E+00 6.3E+01	c*	5.1E+00 8.2E+02	C					1.0E-01 c 1.5E+01 n	7.0E+00	1.4E-04 1.3E-01	C	6.2E-02
1.0E-01	I 5.0E-06		I 3.0E-02	1 \	/	1	J. I	1.2E+05	Dioxane, 1,4-	123-91-1	5.3E+00	C	2.4E+01	C	5.6E-01	c*	2.5E+00	c*	4.6E-01 c	7.32100	9.4E-05	C	U.ZL=UZ
									Dioxins														
6.2E+03	I 1.3E+00	7.05.40	1 405.00	0 ,	,	1	0.03		~Hexachlorodibenzo-p-dioxin, Mixture	34465-46-8	1.0E-04	C	4.7E-04	C	2.2E-06		9.4E-06	С	1.3E-05 c	2.05.05	1.7E-05	С	4.55.05
1.3E+05	C 3.8E+01	7.0E-10 3.0E-02	I 4.0E-08	C \	/	1	0.03 0.1		~TCDD, 2,3,7,8- Diphenamid	1746-01-6 957-51-7	4.8E-06 1.9E+03	c* n	2.2E-05 2.5E+04	c* n	7.4E-08	С	3.2E-07	С	1.2E-07 c 5.3E+02 n	3.0E-05	5.9E-08 5.2E+00	c n	1.5E-05
		0.0L=02	4.0E-04	χV	/	1	J. I		Diphenyl Ether	101-84-8	3.4E+01	n	1.4E+02	n	4.2E-01	n	1.8E+00	n	8.3E-01 n		3.4E-03	n	
		8.0E-04	X			1	0.1		Diphenyl Sulfone	127-63-9	5.1E+01	n	6.6E+02	n					1.5E+01 n		3.6E-02	n	
0.0= -:		1.0E-01	0			1	0.1		Diphenylamine	122-39-4	6.3E+03	n	8.2E+04	n	4.0= -		F 0F		1.3E+03 n		2.3E+00	n	
8.0E-01	I 2.2E-04	2.2E-03	1			1	0.1		Diphenylhydrazine, 1,2-	122-66-7 2764-72-9	6.8E-01 1.4E+02	c n	2.9E+00 1.8E+03	c n	1.3E-02	С	5.6E-02	С	7.8E-02 c 4.0E+01 n	2.0E+01	2.5E-04 3.3F-01	c n	1.7E-01
7.4E+00	C 2.1E-03					1	0.1		Direct Black 38	1937-37-7	7.3E-02	C	3.1E-01	n C	1.3E-03	С	5.8E-03	С	1.1E-02 c	2.00+01	5.1E+00	n C	1.72-01
7.4E+00	C 2.1E-03	С				1	0.1		Direct Blue 6	2602-46-2	7.3E-02	С	3.1E-01	С	1.3E-03	С	5.8E-03	С	1.1E-02 c		1.7E+01	С	
6.7E+00	C 1.9E-03	С				1	0.1		Direct Brown 95	16071-86-6	8.1E-02	С	3.4E-01	С	1.5E-03	С	6.5E-03	С	1.2E-02 c		1.6E-01	С	
		4.0E-05		\	,	1	0.1		Disulfoton	298-04-4	2.5E+00	n	3.3E+01	n					5.0E-01 n		9.4E-04	n	
		1.0E-02 2.0E-03			<i>'</i>	1	0.1		Dithiane, 1,4- Diuron	505-29-3 330-54-1	7.8E+02 1.3E+02	n n	1.2E+04 1.6E+03	n					2.0E+02 n 3.6E+01 n		9.7E-02 1.5E-02	n n	
			Ö			1	0.1		Dodine	2439-10-3	1.3E+03	n	1.6E+04	n					4.0E+02 n		2.1E+00	n	
		5.0E-02	Ō	١	/	1			EPTC	759-94-4	3.9E+03	n	5.8E+04	n					7.5E+02 n		4.0E-01	n	
		6.0E-03	I	\	/	1			Endosulfan	115-29-7	4.7E+02	n	7.0E+03	n					1.0E+02 n		1.4E+00	n	
		6.0E-03 2.0E-02	1			1	0.1		Endosulfan Sulfate Endothall	1031-07-8 145-73-3	3.8E+02 1.3E+03	n	4.9E+03 1.6E+04	n					1.1E+02 n 3.8E+02 n	1.0E+02	2.1E+00 9.1E-02	n	2.4E-02
		3.0E-04	i			1	0.1		Endrin	72-20-8	1.9E+01	n	2.5E+02	n					2.3E+00 n	2.0E+00		n	8.1E-02
9.9E-03	I 1.2E-06		P 1.0E-03			1			Epichlorohydrin	106-89-8	1.9E+01	n	8.2E+01	n	1.0E+00		4.4E+00		2.0E+00 n		4.5E-04	n	
			2.0E-02	1 \	/	1		1.5E+04	Epoxybutane, 1,2-	106-88-7	1.6E+02	n	6.7E+02	n	2.1E+01	n	8.8E+01	n	4.2E+01 n		9.2E-03	n	
		4.0E-02 5.0E-03	P I			1	0.1 0.1		Ethanol, 2-(2-methoxyethoxy)-	111-77-3 16672-87-0	2.5E+03 3.2E+02	n	3.3E+04 4.1E+03	n					8.0E+02 n 1.0E+02 n		1.6E-01 2.1E-02	n	
		5.UE-U3	1			1	0.1		Ethephon	100/2-8/-0	3.2E+02	n	4. IE+03	n					1.0E+02 n		2.1E-02	n	

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAS	T; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V = v	volatile; R = R	RBA applied; c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = ceiling
Toxicity and Chemical-specific Information	limit exceeded; s = Csat exceeded Contaminant	1.	Screening Levels Protection of Ground Water SSLs
SFO			Risk-based MCL-based
(mg/kg-day) ⁻¹ y (ug/m ³) ⁻¹ y (mg/kg-day) y (mg/m ³) y I mutagen GIABS ABS ₄ (mg/kg)	Analyte	CAS No.	Resident Soil Industrial Soil Resident Air Industrial Air Tapwater MCL SSL SSL SSL (mg/kg) key (mg/kg) key (ug/m³) key (ug/m³) key (ug/L) key (ug/L) (mg/kg) key (mg/kg) key
5.0E-04 I 0.1		563-12-2	3.2E+01 n 4.1E+02 n 4.3E+00 n 8.5E-03 n
		111-15-9	2.6E+03 n 1.4E+04 n 6.3E+01 n 2.6E+02 n 1.2E+02 n 2.5E-02 n
		110-80-5	5.2E+03 n 4.7E+04 n 2.1E+02 n 8.8E+02 n 3.4E+02 n 6.8E-02 n
		141-78-6 140-88-5	6.2E+02 n 2.6E+03 n 7.3E+01 n 3.1E+02 n 1.4E+02 n 3.1E-02 n 4.7E+01 n 2.1E+02 n 8.3E+00 n 3.5E+01 n 1.4E+01 n 3.2E-03 n
		75-00-3	1.4E+04 ns 5.7E+04 ns 1.0E+04 n 4.4E+04 n 2.1E+04 n 5.9E+00 n
		60-29-7	1.6E+04 ns 2.3E+05 nms 3.9E+03 n 8.8E-01 n
3.0E-01 P V 1 1.1E+03 1.0E-05 I 1 0.1		97-63-2 2104-64-5	1.8E+03 ns 7.6E+03 ns 3.1E+02 n 1.3E+03 n 6.3E+02 n 1.5E-01 n 6.3E-01 n 8.2E+00 n 8.2E+00 n 8.9E-02 n 2.8E-03 n
	Ethylbenzene 1	100-41-4	5.8E+00 c 2.5E+01 c 1.1E+00 c 4.9E+00 c 1.5E+00 c 7.0E+02 1.7E-03 c 7.8E-01
7.0E-02 P 1 0.1	Ethylene Cyanohydrin 1	109-78-4	4.4E+03 n 5.7E+04 n 1.4E+03 n 2.8E-01 n
		107-15-3	7.0E+03 n 1.1E+05 nm 1.8E+03 n 4.1E-01 n 1.3E+05 nm 1.6E+06 nm 4.2E+02 n 1.8E+03 n 4.0E+04 n 8.1E+00 n
2.0E+00	Ethylene Glycol 1 Ethylene Glycol Monobutyl Ether 1	107-21-1 111-76-2	1.3E+05 nm 1.6E+06 nm 4.2E+02 n 1.8E+03 n 4.0E+04 n 8.1E+00 n 6.3E+03 n 8.2E+04 n 1.7E+03 n 7.0E+03 n 2.0E+03 n 4.1E-01 n
		75-21-8	2.0E-03 c 2.5E-02 c 3.4E-04 c 4.1E-03 c 6.7E-04 c 1.4E-07 c
4.5E-02 C 1.3E-05 C 8.0E-05 I 1 0.1	Ethylene Thiourea 9	96-45-7	5.1E+00 n 5.1E+01 c** 2.2E-01 c 9.4E-01 c 1.6E+00 n 3.6E-04 n
6.5E+01 C 1.9E-02 C V 1 1.5E+05 3.0E+00 I 1 0.1		151-56-4 34-72-0	2.7E-03 c 1.2E-02 c 1.5E-04 c 6.5E-04 c 2.4E-04 c 5.2E-08 c 1.9E+05 nm 2.5E+06 nm 5.8E+04 n 1.3E+02 n
2.5E-04 I 1 0.1	Fenamiphos 2	22224-92-6	1.6E+01 n 2.1E+02 n 4.4E+00 n 4.3E-03 n
2.5E-02 I 1 0.1		39515-41-8	1.6E+03 n 2.1E+04 n 6.4E+01 n 2.9E+00 n
2.5E-02 I 1 0.1 1.3E-02 I 1 0.1		51630-58-1 2164-17-2	1.6E+03 n 2.1E+04 n 5.0E+02 n 3.2E+02 n 8.2E+02 n 1.1E+04 n 2.4E+02 n 1.9E-01 n
1.3E-02 I 1 0.1 4.0E-02 C 1.3E-02 C 1		16984-48-8	8.2E+02 n 1.1E+04 n 2.4E+02 n 1.9E-01 n 3.1E+03 n 4.7E+04 n 1.4E+01 n 5.7E+01 n 8.0E+02 n 4.0E+03 1.2E+02 n 6.0E+02
6.0E-02 I 1.3E-02 C 1	Fluorine (Soluble Fluoride) 7	7782-41-4	4.7E+03 n 7.0E+04 n 1.4E+01 n 5.7E+01 n 1.2E+03 n 4.0E+03 1.8E+02 n 6.0E+02
8.0E-02 I 1 0.1		59756-60-4	5.1E+03 n 6.6E+04 n 1.4E+03 n 1.6E+02 n
4.0E-02 O 1 0.1 2.0E-03 O 1 0.1		56425-91-3 35509-19-9	
5.0E-01 O 1 0.1		66332-96-5	3.2E+04 n 4.1E+05 nm 7.9E+03 n 4.2E+01 n
1.0E-02 I 1 0.1		9409-94-5	6.3E+02 n 8.2E+03 n 2.0E+02 n 2.9E+02 n
9.0E-02 O 1 0.1 2.5E-03 O 1 0.1		133-07-3 72178-02-0	5.7E+03 n 7.4E+04 n 1.6E+03 n 3.9E-01 n 1.6E+02 n 2.1E+03 n 4.8E+01 n 1.6E-01 n
2.0E-03 I 1 0.1		944-22-9	1.35+02 n 1.6E+03 n 2.4E+01 n 4.7E-02 n
		50-00-0	1.1E+01 c* 5.0E+01 c* 2.2E-01 c* 9.4E-01 c* 3.9E-01 c* 7.8E-05 c*
9.0E-01 P 3.0E-04 X V 1 1.1E+05 2.5E+00 O 1 0.1		64-18-6 89148-24-8	2.9E+01 n 1.2E+02 n 3.1E-01 n 1.3E+00 n 6.3E-01 n 1.3E-04 n 1.6E+05 nm 2.1E+06 nm 5.0E+04 n 6.6E+02 n
2.3L100 O 1 0.1	Furans	35140-24-0	1.02 103 1111 2.12 100 1111 3.02 104 11
1.0E-03 X V 1		132-64-9	7.8E+01 n 1.2E+03 n 7.9E+00 n 1.5E-01 n
1.0E-03 I V 1 6.2E+03 9.0E-01 I 2.0E+00 I V 1 1.7E+05		110-00-9 109-99-9	7.8E+01 n 1.2E+03 n 1.9E+01 n 7.3E-03 n 1.8E+04 n 9.5E+04 n 2.1E+03 n 8.8E+03 n 3.4E+03 n 7.5E-01 n
3.8E+00 H 1 0.1		67 -45- 8	1.4E-01 c 6.0E-01 c 2.0E-02 c 3.9E-05 c
3.0E-03 I 5.0E-02 H V 1 1.0E+04		98-01-1	2.1E+02 n 2.6E+03 n 5.2E+01 n 2.2E+02 n 3.8E+01 n 8.1E-03 n
1.5E+00 C 4.3E-04 C 1 0.1 3.0E-02 I 8.6E-06 C 1 0.1		31-82-8 60568-05-0	3.6E-01 c 1.5E+00 c 6.5E-03 c 2.9E-02 c 5.1E-02 c 6.8E-05 c 1.8E+01 c 7.7E+01 c 3.3E-01 c 1.4E+00 c 1.1E+00 c 1.2E-03 c
6.0E-03 O 1 0.1	Glufosinate, Ammonium 7	77182-82-2	
1.0E-01 A 8.0E-05 C 1 0.1	Glutaraldehyde 1	111-30-8	6.0E+03 n 7.0E+04 n 8.3E-02 n 3.5E-01 n 2.0E+03 n 4.0E-01 n
		765-34-4	2.3E+01 n 2.1E+02 n 1.0E+00 n 4.4E+00 n 1.7E+00 n 3.3E-04 n 6.3E+03 n 8.2E+04 n 2.0E+03 n 7.0E+02 8.8E+00 n 3.1E+00
1.0E-01 I 1 0.1 1.0E-02 X V 1		1071-83-6 113-00-8	6.3E+03 n 8.2E+04 n 2.0E+03 n 7.0E+02 8.8E+00 n 3.1E+00 7.8E+02 n 1.2E+04 n 2.0E+02 n 4.5E-02 n
2.0E-02 P 1 0.1	Guanidine Chloride 5	50-01-1	1.3E+03 n 1.6E+04 n 4.0E+02 n
3.0E-02 X 1 0.1 5.0E-05 I 1 0.1		506-93-4 59806-40-2	1.9E+03 n 2.5E+04 n 6.0E+02 n 1.5E-01 n 3.2E+00 n 4.1E+01 n 7.6E-01 n 8.4E-03 n
5.0E-05 I 1 0.1 4.5E+00 I 1.3E-03 I 5.0E-04 I V 1		76-44-8	3.2E+00 n 4.1E+01 n 7.6E-01 n 8.4E-03 n 1.3E-01 c 6.3E-01 c 2.2E-03 c 9.4E-03 c 1.4E-03 c 4.0E-01 1.2E-04 c 3.3E-02
9.1E+00 2.6E-03 1.3E-05 V 1	Heptachlor Epoxide 1	1024-57-3	7.0E-02 c* 3.3E-01 c* 1.1E-03 c 4.7E-03 c 1.4E-03 c* 2.0E-01 2.8E-05 c* 4.1E-03
		111-71-7 142-82-5	2.4E+01 n 1.0E+02 n 3.1E+00 n 1.3E+01 n 6.3E+00 n 1.4E-03 n 2.2E+01 n 2.9E+02 ns 4.2E+02 n 1.8E+03 n 6.0E+00 n 4.8E-02 n
3.0E-04 X 4.0E-01 P V 1 5.8E+01 2.0E-03 I V 1		142-82-5 37-82-1	2.2E+01
2.0E-04 I 1 0.1	Hexabromodiphenyl ether, 2,2',4,4',5,5'- (BDE-153) 6	8631-49-2	1.3E+01 n 1.6E+02 n 4.0E+00 n
1.6E+00 4.6E-04 8.0E-04 V 1 7.8E-02 2.2E-05 1.0E-03 P V 1 1.7E+01		118-74-1	2.1E-01 c 9.6E-01 c 6.1E-03 c 2.7E-02 c 9.8E-03 c 1.0E+00 1.2E-04 c 1.3E-02
7.8E-02 I 2.2E-05 I 1.0E-03 P V 1 1.7E+01 6.3E+00 I 1.8E-03 I 8.0E-03 A 1 0.1		37-68-3 319-84-6	1.2E+00 c* 5.3E+00 c 1.3E-01 c 5.6E-01 c 1.4E-01 c* 2.7E-04 c* 8.6E-02 c 3.6E-01 c 1.6E-03 c 6.8E-03 c 7.2E-03 c 4.2E-05 c
1.8E+00 5.3E-04 1 0.1	Hexachlorocyclohexane, Beta-	319-85-7	3.0E-01 c 1.3E+00 c 5.3E-03 c 2.3E-02 c 2.5E-02 c 1.5E-04 c
1.1E+00 C 3.1E-04 C 3.0E-04 I 1 0.04	Hexachlorocyclohexane, Gamma- (Lindane) 5	58-89-9	5.7E-01 c* 2.5E+00 c 9.1E-03 c 4.0E-02 c 4.2E-02 c* 2.0E-01 2.4E-04 c* 1.2E-03
1.8E+00 5.1E-04 1 0.1 6.0E-03 2.0E-04 V 1 1.6E+01		508-73-1 77-47-4	3.0E-01 c 1.3E+00 c 5.5E-03 c 2.4E-02 c 2.5E-02 c 1.5E-04 c 1.8E+00 n 7.5E+00 n 2.1E-01 n 8.8E-01 n 4.1E-01 n 5.0E+01 1.3E-03 n 1.6E-01
4.0E-02 1.1E-05 C 7.0E-04 3.0E-02 V 1	Hexachloroethane 6	67-72-1	1.8E+00 c* 8.0E+00 c* 2.6E-01 c 1.1E+00 c 3.3E-01 c* 2.0E-04 c*
3.0E-04 I 1 0.1	Hexachlorophene 7	70-30-4	1.9E+01 n 2.5E+02 n 6.0E+00 n 8.0E+00 n
8.0E-02 I 4.0E-03 I 1 0.015 1.0E-05 I V 1 3.4E+03		121-82-4 322-06-0	8.3E+00 c* 3.8E+01 c 9.7E-01 c* 3.7E-04 c* 3.1E+00 n 1.3E+01 n 1.0E-02 n 4.4E-02 n 2.1E-02 n 2.1E-04 n
4.0E-04 C 1 0.1		1035-89-6	5.7E+05 nm 2.4E+06 nm 4.2E-01 n 1.8E+00 n
4.0E-04 C 1 0.1	Hexamethylene diisocyanate isocyanurate 3	3779-63-3	5.7E+05 nm 2.4E+06 nm 4.2E-01 n 1.8E+00 n
4.0E-04 P 1 0.1 2.0E-07 X 6.0E-01 P V 1 1.4E+02	Hexamethylphosphoramide 6 Hexane, Commercial E	580-31-9 E5241997	2.5E+01 n 3.3E+02 n 8.0E+00 n 1.8E-03 n 1.2E+01 c* 5.1E+01 c* 6.1E+01 c* 2.8E+01 c* 2.0E-01 c*
		110-54-3	1.2E+01 c* 5.1E+01 c* 1.4E+01 c* 6.1E+01 c* 2.8E+01 c* 2.0E-01 c* 6.1E+02 ns 2.5E+03 ns 7.3E+02 n 3.1E+03 n 1.5E+03 n 1.0E+01 n
2.0E+00 P 1 0.1	Hexanedioic Acid 1	124-04-9	1.3E+05 nm 1.6E+06 nm 4.0E+04 n 9.9E+00 n
		104-76-7 591-78-6	1.5E+01 n 6.3E+01 n 4.2E-01 n 1.8E+00 n 8.3E-01 n 2.3E-04 n
5.0E-03 3.0E-02 V 1 3.3E+03 3.3E-02 1 0.1		51235-04-2	2.0E+02 n 1.3E+03 n 3.1E+01 n 1.3E+02 n 3.8E+01 n 8.8E-03 n 2.1E+03 n 2.7E+04 n 6.4E+02 n 3.0E-01 n
. 0.1			

Key: I = IRIS;	; P = PPRTV; O = OPP; A = ATSE	DR; C = Cal EPA	X = PPRTV	/ Screening	g Level; H = H	AST; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V	/ = volatile; R = F	RBA applied ; c	= cano	er; n = noncan	icer; * :	= where: n SL <	100X c SL	; ** = v	vhere n SL	< 10X c S	SL; SSL value	s are based or	n DAF=1	; m = ceiling
	Toxicity and Che	emical-specific Inf	formation			limit exceeded; s = Csat excer Contaminant	eded.					Screening L	evels					Protection of		
SEO	k k RfD	k RfC k	V		С			Resident Soil		Industrial Soil		Resident Air	Industria	al Air	Tapwa	tor	MCL	Risk-based SSI	1	MCL-based SSI
(mg/kg-day) ⁻¹	y (ug/m ³) ⁻¹ y (mg/kg-day)	y (mg/m³) y	I mutagen	GIABS	ABS _d (mg	g) Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m³) ke		- 1) key	(ug/L)	(mg/kg)	key	(mg/kg)
	2.5E-02	ı ' ' '		1	0.1	Hexythiazox	78587-05-0	1.6E+03	n	2.1E+04	n		- 1		1.1E+			5.0E-01	n	
	1.7E-02			11	0.1	Hydramethylnon	67485-29-4	1.1E+03	n	1.4E+04	n				3.4E+			1.2E+05	n	
	I 4.9E-03 I I 4.9E-03 I	3.0E-05 P	V	1	1.16	05 Hydrazine Hydrazine Sulfate	302-01-2 10034-93-2	3.2E-02 2.3E-01	c*	1.4E-01 1.1E+00	c* c	5.7E-04 c			c* 1.1E-0 c 2.6E-0			2.2E-07	c*	
3.0L100	1 4.92-03 1	2.0E-02 I	V	1		Hydrogen Chloride	7647-01-0	2.8E+07	nm	1.2E+08	nm	2.1E+01 n	8.8E+		n 4.2E+					
	4.0E-02	C 1.4E-02 C	V	1		Hydrogen Fluoride	7664-39-3	3.1E+03	n	4.7E+04	n	1.5E+01 n	n 6.1E+	01	n 2.8E+	01 n				
0.05.00	P 4.0F-02	2.0E-03 I	V	1		Hydrogen Sulfide	7783-06-4	2.8E+06	nm	1.2E+07	nm	2.1E+00 n	n 8.8E+	00	n 4.2E+			0.75.04		
6.0E-02 6.1E-02	1.02.02	<u> </u>		1	0.1	Hydroquinone Imazalii	123-31-9 35554-44-0	9.0E+00 8.9E+00	c*	3.8E+01 3.8E+01	C*				1.3E+ 9.0E-0			8.7E-04 1.5E-02	c*	
0.1L-02	2.5E-01	Ĭ		1	0.1	Imazaguin	81335-37-7	1.6E+04	n	2.1E+05	nm				4.9E+			2.4E+01	n	
		0		1	0.1	Imazethapyr	81335-77-5	1.6E+05	nm	2.1E+06	nm				4.7E+			4.1E+01	n	
1		A		1		lodine	7553-56-2	7.8E+02 2.5F+03	n n	1.2E+04	n				2.0E+ 7.4E+	02 n		1.2E+01	n n	
1	4.0E-02 7.0E-01	I P		1	0.1	Iprodione Iron	36734-19-7 7439-89-6	5.5E+03 5.5E+04	n n	3.3E+04 8.2E+05	n nm				1.4E+	02 n		2.2E-01 3.5E+02	n n	
	3.0E-01	I	V	1		04 Isobutyl Alcohol	78-83-1	2.3E+04	ns	3.5E+05	nms				5.9E+			1.2E+00	n	
9.5E-04		I 2.0E+00 C		1	0.1	Isophorone	78-59-1	5.7E+02	C*	2.4E+03	C*	2.1E+03 r	n 8.8E+	03	n 7.8E+			2.6E-02	C*	
	1.5E-02 2.0E+00	P 2.0E-01 P	V	1	1.41	Isopropalin 05 Isopropanol	33820-53-0 67-63-0	1.2E+03 5.6E+03	n n	1.8E+04 2.4E+04	n	2.1E+02 r	n 8.8E+	02	4.0E+ n 4.1E+			9.2E-01 8.4E-02	n n	
	2.0E+00 1.0E-01	1 2.0E-01 P	•	1	0.1	Isopropyl Methyl Phosphonic Acid	1832-54-8	6.3E+03	n n	8.2E+04	n	2.1ETUZ [0.0E+	02	2.0E+			6.4E-02 4.3E-01	n n	
	5.0E-02	I		1	0.1	Isoxaben	82558-50-7	3.2E+03	n	4.1E+04	n				7.3E+	02 n		2.0E+00	n	
		3.0E-01 A	V	1	0.4	JP-7	E1737665	4.3E+08	nm	1.8E+09	nm	3.1E+02 r	1.3E+	03				4.05.55		
	8.0E-03 2.0E-04	0 Y		1	0.1 0.1	Lactofen Lactonitrile	77501-63-4 78-97-7	5.1E+02 1.3E+01	n	6.6E+03 1.6E+02	n				1.0E+ 4.0E+			4.6E+00 8.1E-04	n n	
	2.0E-04 5.0E-05	P		1	0.1	Lanthanum	7439-91-0	3.9E+00	n n	5.8E+01	n				4.0E+			0. 1E-04	"	
	2.1E-05	P		1	0.1	Lanthanum Acetate Hydrate	100587-90-4	1.3E+00	n	1.7E+01	n				4.2E-0	01 n				
	1.02 00	P		1		Lanthanum Chloride Heptahydrate	10025-84-0	1.5E+00	n	2.2E+01	n				3.7E-0					
	2.8E-05 1.6E-05	P		1		Lanthanum Chloride, Anhydrous Lanthanum Nitrate Hexahydrate	10099-58-8 10277-43-7	2.2E+00 1.3E+00	n	3.3E+01 1.9E+01	n n				5.7E-0 3.2E-0					
1	1.02-03	-				Lead Compounds	10277=43=7	1.32100	-11	1.92101	"				J.ZL=("				
	C 1.2E-05 C			1		~Lead Phosphate	7446-27-7	8.2E+01	С	3.8E+02	С	2.3E-01 c			c 9.1E+					
2.1E-01	C 8.0E-05 C			1	0.1	~Lead acetate	301-04-2	2.6E+00	С	1.1E+01	С	3.5E-02 c 1.5E-01 G		01	c 3.7E-0 1.5E+	01 c	4.55.04	7.5E-05	С	4.45.04
3.8F-02	C 1.1E-05 C			1	0.1	~Lead and Compounds ~Lead subacetate	7439-92-1 1335-32-6	4.0E+02 1.4F+01	C	8.0E+02 6.0E+01	G c	1.5E-01 G		00	c 2.1E+		1.5E+01	4.5E-04	C	1.4E+01
0.0L-02	1.0E-07	I	V	i	2.4	00 ~Tetraethyl Lead	78-00-2	7.8E-03	n	1.2E-01	n	2.02-01		00	1.3E-0			4.7E-06	n	
	5.0E-06	Р	V	1	3.81	02 Lewisite	541-25-3	3.9E-01	n	5.8E+00	n				9.0E-0			3.8E-05	n	
	7.7E-03 2.0E-03	0		1	0.1	Linuron Lithium	330-55-2 7439-93-2	4.9E+02 1.6E+02	n n	6.3E+03 2.3E+03	n				1.3E+ 4.0E+			1.1E-01 1.2E+01	n n	
	5.0E-04	Ī		1	0.1	MCPA	94-74-6	3.2E+01	n	4.1E+02	n				7.5E+			2.0E-03	n	
	4.4E-03	0		1	0.1	MCPB	94-81-5	2.8E+02	n	3.6E+03	n				6.5E+	01 n		2.6E-02	n	
	1.0E-03	I		1	0.1	MCPP	93-65-2	6.3E+01	n	8.2E+02	n				1.6E+			4.7E-03	n	
	2.0E-02 1.0E-01	I 7.0E-04 C		1 1	0.1	Malathion Maleic Anhydride	121-75-5 108-31-6	1.3E+03 6.3E+03	n n	1.6E+04 8.0E+04	n n	7.3E-01 r	n 3.1E+	00	3.9E+			1.0E-01 3.8E-01	n n	
	5.0E-01	1 7.0L=04 C		1	0.1	Maleic Hydrazide	123-33-1	3.2E+04	n	4.1E+05	nm	7.3L-01 I	1 J. IL 1	00	1.0E+			2.1E+00	n	
	1.0E-04	Р		1	0.1	Malononitrile	109-77-3	6.3E+00	n	8.2E+01	n				2.0E+	00 n		4.1E-04	n	
		H		1	0.1	Mancozeb	8018-01-7 12427-38-2	1.9E+03	n	2.5E+04	n				5.4E+			7.6E-01	n	
	5.0E-03 1.4E-01	I 5.0E-05 I		1	0.1	Maneb Manganese (Diet)	7439-96-5	3.2E+02	n	4.1E+03	n				9.8E+	01 n		1.4E-01	n	
1		G 5.0E-05 I		0.04		Manganese (Non-diet)	7439-96-5	1.8E+03	n	2.6E+04	n	5.2E-02 n	n 2.2E-	01	n 4.3E+	02 n		2.8E+01	n	
		H		1	0.1	Mephosfolan	950-10-7	5.7E+00	n	7.4E+01	n				1.8E+			2.6E-03	n	
1.1E-02	3.0E-02 P 4.0E-03	<u> </u>		1 1	0.1	Mepiquat Chloride Mercaptobenzothiazole, 2-	24307-26-4 149-30-4	1.9E+03 4.9E+01	n c**	2.5E+04 2.1E+02	n c*				6.0E+			2.0E-01 1.8E-02	n c*	
1.12-02	4.0⊑-03			,	0.1	Mercury Compounds	145-30-4	4.52701	·	Z. 1LTUZ	·				0.3E+	00 0		1.02-02		
	3.0E-04	I 3.0E-04 G		0.07		~Mercuric Chloride (and other Mercury salts)	7487-94-7	2.3E+01	n	3.5E+02	n		1.3E+				2.0E+00			
	4.05.6	3.0E-04 I	V	1	3.16	00 ~Mercury (elemental)	7439-97-6	1.1E+01	ns	4.6E+01	ns	3.1E-01 n	1.3E+	00	n 6.3E-0		2.0E+00	3.3E-02	n	1.0E-01
	1.0E-04 8.0E-05	1		1	0.1	~Methyl Mercury ~Phenylmercuric Acetate	22967-92-6 62-38-4	7.8E+00 5.1E+00	n n	1.2E+02 6.6E+01	n n				2.0E+ 1.6E+			1.4E+01 5.0E-04	n n	
	3.0E-05	I	V	1	0.1	Merphos	150-50-5	2.3E+00	n	3.5E+01	n				6.0E-0			5.9E-02	n	
	6.0E-02	I		1	0.1	Metalaxyl	57837-19-1	3.8E+03	n	4.9E+04	n				1.2E+	03 n		3.3E-01	n	
		I 3.0E-02 P	V	1	4.68	03 Methacrylonitrile	126-98-7	7.5E+00	n	1.0E+02	n	3.1E+01 r	1.3E+	02	n 1.9E+			4.3E-04	n	
	5.0E-05 2.0E+00	I I 2.0E+01 I	V	1	0.1	Methamidophos 05 Methanol	10265-92-6 67-56-1	3.2E+00 1.2E+05	n nms	4.1E+01 1.2E+06	nme	2.1F+04 n	8.8F+	04	1.0E+ n 2.0E+			2.1E-04 4.1E+00	n n	
		0	•	1	0.1	Methidathion	950-37-8	9.5E+01	n	1.2E+03	n	2.12.04	. 0.0L1	•	2.9E+			7.1E-03	n	
	2.5E-02	I		1	0.1	Methomyl	16752-77-5	1.6E+03	n	2.1E+04	n				5.0E+	02 n		1.1E-01	n	
4.9E-02				1	0.1	Methoxy-5-nitroaniline, 2-	99-59-2	1.1E+01	С	4.7E+01	С				1.5E+		4.05.04	5.3E-04	C	2.25.00
	5.0E-03 8.0E-03	P 1.0E-03 P	V	1	0.1	Methoxychlor 05 Methoxyethanol Acetate, 2-	72-43-5 110-49-6	3.2E+02 1.1E+02	n n	4.1E+03 5.1E+02	n n	1.0E+00 r	n 4.4E+	00	3.7E+ n 2.1E+		4.0E+01	2.0E+00 4.2E-04	n n	2.2E+00
	5.0E-03	P 2.0E-02 I		1	1.18	05 Methoxyethanol, 2-	109-86-4	3.3E+02	n	3.5E+03	n	2.1E+01 r			n 2.9E+	01 n		5.9E-03	n	
	1.0E+00	X	V	1	2.91	04 Methyl Acetate	79-20-9	7.8E+04	ns	1.2E+06	nms				2.0E+	04 n		4.1E+00	n	
		2.0E-02 P I 5.0E+00 I		1	6.8	03 Methyl Acrylate 04 Methyl Ethyl Ketone (2-Butanone)	96-33-3 78-93-3	1.5E+02 2.7F+04	n n	6.1E+02 1.9E+05	n nms	2.1E+01 r 5.2E+03 r			n 4.2E+ n 5.6E+			8.9E-03 1.2F+00	n n	
	6 DE 04	1 0.0⊑+00 I		1		05 Methyl Hydrazine	78-93-3 60-34-4	2.7E+04 1.4E-01	n c**	1.9E+05 6.2E-01	nms c**	5.2E+03 r 2.8E-03 c*			n 5.6E+			1.2E+00 1.3E-06	n c**	
		P 2.0E-05 X	V	1	1.8															
		P 2.0E-05 X 3.0E+00 I	V	1	3.41	03 Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	3.3E+04	ns		nms	3.1E+03 n	1.3E+	04	n 6.3E+	03 n		1.4E+00	n	
	1.0E-03 X 1.0E-03	3.0E+00 I 1.0E-03 C	V V	1 1	3.4I 1.0I	03 Methyl Isobutyl Ketone (4-methyl-2-pentanone) 04 Methyl Isocyanate	624-83-9	4.6E+00	ns n	1.9E+01	nms n	3.1E+03 r 1.0E+00 r	1.3E+ 1 4.4E+	04 00	n 2.1E+	03 n 00 n		1.4E+00 5.9E-04	n n	
	1.0E-03 X 1.0E-03 1.4E+00	3.0E+00 I	V V	1 1 1 1	3.4I 1.0I 2.4I	Methyl Isobutyl Ketone (4-methyl-2-pentanone) Methyl Isocyanate Methyl Methacrylate	624-83-9 80-62-6	4.6E+00 4.4E+03	n ns	1.9E+01 1.9E+04	nms n ns	3.1E+03 n	1.3E+	04 00	n 2.1E+ n 1.4E+	03 n 00 n 03 n		1.4E+00 5.9E-04 3.0E-01	n n	
	1.0E-03 X 1.0E-03	3.0E+00 I 1.0E-03 C I 7.0E-01 I	V V	1 1 1 1	3.4I 1.0I	03 Methyl Isobutyl Ketone (4-methyl-2-pentanone) 04 Methyl Isocyanate	624-83-9	4.6E+00	ns n ns n	1.9E+01	nms n	3.1E+03 r 1.0E+00 r	1.3E+ 1 4.4E+	04 00	n 2.1E+	03 n 00 n 03 n		1.4E+00 5.9E-04		

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR;	C = Cal EPA; X = PPRTV Scree	ning Level; H = HEAS	T; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V limit exceeded; s = Csat excee		RBA applied ; c =	cancer; n = nor	ncancer; * = v	where: n SL <	100X c SL; ** =	where n SL < 10X o	SL; SSL values	are based o	n DAF=1; m =	ceiling
Toxicity and Chemic	cal-specific Information		Contaminant	ueu.				Screening L	evels				Ground Water	
SEO a IUR a RfD a	RfC: 0 0	C _{sat}			Resident Soil	Industrial	Coil R	esident Air	Industrial Air	Tapwater	MCL	Risk-based SSI	MCL-b	Daooa
0.0 e .0.1 e .1.2, e	(mg/m³) y I mutagen GIAB		Analyte	CAS No.		key (mg/kg	0011			key (ug/L) key	(ug/L)	(mg/kg)	key (mg/	
9.9E-02 C 2.8E-05 C	1	0.1	Methyl methanesulfonate	66-27-3		c 2.3E+0				c 7.9E-01 c		1.6E-04	c	0
	3.0E+00 I V 1		Methyl tert-Butyl Ether (MTBE)	1634-04-4	4.7E+01	c 2.1E+0		1.1E+01	4.7E+01	c 1.4E+01 c		3.2E-03	С	
3.0E-04 X	3.0E+00 X V 1	0.1 2.5E+03	Methyl-1,4-benzenediamine dihydrochloride, 2- Methyl-2-Pentanol, 4-	615-45-2 108-11-2	1.9E+01 5.4E+04	n 2.5E+0		3.1E+03	1.3E+04	6.0E+00 n n 6.3E+03 n		3.6E-03 1.4E+00	n n	
9.0E-03 P 2.0E-02 X	1	0.1	Methyl-5-Nitroaniline, 2-	99-55-8		c* 2.6E+0		0.12.00	1.02.04	8.2E+00 c*		4.6E-03	c*	
8.3E+00 C 2.4E-03 C	11_	0.1	Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	6.5E-02	c 2.8E-0			5.1E-03	c 9.4E-03 c		3.2E-06	С	
1.3E-01 C 3.7E-05 C 1.0E-02 A	1	0.1 0.1	Methylaniline Hydrochloride, 2- Methylarsonic acid	636-21-5 124-58-3	4.2E+00 6.3E+02	c 1.8E+0 n 8.2E+0		7.6E-02	3.3E-01	c 6.0E-01 c 2.0E+02 n		2.6E-04 5.8E-02	c n	
2.0E-04 X	i	0.1	Methylbenzene,1-4-diamine monohydrochloride, 2-	74612-12-7	1.3E+01	n 1.6E+0				4.0E+00 n		0.02-02		
1.0E-01 X 3.0E-04 X	1	0.1	Methylbenzene-1,4-diamine sulfate, 2-	615-50-9		c** 2.3E+0				7.8E-01 c**				
2.2E+01 C 6.3E-03 C 2.0E-03 I 1.0E-08 I 6.0E-03 I	6.0F-01 I V M 1	0.1 3.3E+03	Methylcholanthrene, 3- Methylene Chloride	56-49-5 75-09-2	5.5E-03 5.7E+01	c 1.0E-0		1.6E-04 c		c 1.1E-03 c c** 1.1E+01 c**	5.0F+00	2.2E-03 2.9F-03	c c** 1.3E	-03
1.0E-01 P 4.3E-04 C 2.0E-03 P	M 1	0.1	Methylene-bis(2-chloroaniline), 4,4'-	101-14-4	1.2E+00	c 2.3E+0			2.9E-02	c 1.6E-01 c	3.02	1.8E-03	С	
4.6E-02 1.3E-05 C	1	0.1	Methylene-bis(N,N-dimethyl) Aniline, 4,4'-	101-61-1		c 5.0E+0			9.4E-01	c 7.0E-01 c		3.9E-03	С	
	2.0E-02 C 1 6.0E-04 I 1	0.1	Methylenebisbenzenamine, 4,4'- Methylenediphenyl Diisocyanate	101-77-9 101-68-8	3.4E-01 8.5E+05	nm 3.6F+0			2.7E-02 1 2.6E+00	c 4.7E-02 c		2.1E-04	С	
7.0E-02 H	V 1	5.0E+02	Methylstyrene, Alpha-	98-83-9	5.5E+03	ns 8.2E+0				7.8E+02 n		1.2E+00	n	
1.5E-01 I		0.1	Metolachlor	51218-45-2	9.5E+03	n 1.2E+0				2.7E+03 n		3.2E+00	n	
2.5E-02 I 2.5E-01 I	1	0.1 0.1	Metribuzin Metsulfuron-methyl	21087-64-9 74223-64-6	1.6E+03 1.6E+04	n 2.1E+0				4.9E+02 n 4.9E+03 n		1.5E-01 1.9E+00	n n	
4.5E-06 X 1.0E-02 X	1.0E-01 P V 1	6.9E+00	Midrange Aliphatic Hydrocarbon Streams	E1790669	6.5E-01	c 2.8E+0	0 с	6.2E-01	2.7E+00	c 1.2E+00 c*		1.8E-02	c*	
3.0E+00 P 1.8E+01 C 5.1E-03 C 2.0E-04 I	V 1	3.4E-01	Mineral oils Mirex	8012-95-1 2385-85-5		nms 3.5E+0 c 1.7E-0		5.5E-04	2.4E-03	6.0E+04 n c 8.8E-04 c		2.4E+03 6.3E-04	n	
1.8E+01 C 5.1E-03 C 2.0E-04 I 2.0E-03 I	V 1	0.1	Molinate	2385-85-5	3.6E-02 1.3E+02	c 1.7E-0°		5.5E-04 (2.4E-03	c 8.8E-04 c 3.0E+01 n		6.3E-04 1.7E-02	C n	
5.0E-03 I	2.0E-03 A 1		Molybdenum	7439-98-7	3.9E+02	n 5.8E+0	3 n	2.1E+00 I	n 8.8E+00	n 1.0E+02 n		2.0E+00	n	
1.0E-01 I 2.0F-03 P	1	0.1	Monochloramine Monomethylaniline	10599-90-3 100-61-8	7.8E+03 1.3E+02	n 1.2E+0				2.0E+03 n 3.8F+01 n	4.0E+03(G)	1.4F-02	n	
2.0E-03 P 2.5E-02 I	1	0.1	Myclobutanil Myclobutanil	88671-89-0	1.3E+02 1.6E+03	n 1.6E+0				4.5E+02 n		1.4E-02 5.6E+00	n	
3.0E-04 X	1	0.1	N,N'-Diphenyl-1,4-benzenediamine	74-31-7	1.9E+01	n 2.5E+0	2 n			3.6E+00 n		3.7E-01	n	
2.0E-03 I 3.0E-02 X	V 1		Naled Naphtha, High Flash Aromatic (HFAN)	300-76-5 64742-95-6	1.6E+02 2.3E+03	n 2.3E+0		1.0E+02	1 4.4E+02	4.0E+01 n		1.8E-02	n	
1.8E+00 C 0.0E+00 C	1.0E-01 P V 1	0.1	Naphthylamine, 2-	91-59-8	3.0E-01	n 3.5E+0 c 1.3E+0		1.0E+02 I	1 4.4E+U2	n 1.5E+02 n 3.9E-02 c		2.0E-04	С	
1.2E-01 O	1_	0.1	Napropamide	15299-99-7	7.6E+03	n 9.8E+0	4 n			2.0E+03 n		1.3E+01	n	
	1.4E-05 C 1 1.4E-05 C 1	0.1 0.1	Nickel Acetate Nickel Carbonate	373-02-4 3333-67-3	6.0E-01 6.0E-01	c 2.5E+0		1.1E-02 c 1.1E-02 c		c** 8.6E-02 c c** 8.6E-02 c		1.7E-05	С	
	1.4E-05 C V 1	0.1	Nickel Carbonyl	13463-39-3	7.6E-01	c 3.6E+0		1.1E-02 c		c** 1.7E-02 c**				
	1.4E-05 C 0.04		Nickel Hydroxide	12054-48-7		c 3.6E+0		1.1E-02 c		c** 7.6E-02 c				
	2.0E-05 C 0.04 1.4E-05 C 0.04		Nickel Oxide Nickel Refinery Dust	1313-99-1 E715532	7.6E-01 7.6E-01	c 3.6E+0		1.1E-02 c 1.2E-02 c		c** 7.6E-02 c c** 8.3E-02 c		1.3E-02	•	
	9.0E-05 A 0.04		Nickel Soluble Salts	7440-02-0		n 2.2E+0		1.1E-02 c		c** 3.9E+02 n		2.6E+01	n	_
1.7E+00 C 4.8E-04 I 1.1E-02 C	1.4E-05 C 0.04		Nickel Subsulfide	12035-72-2	4.1E-01	c 1.9E+0	0 с	5.8E-03 c	** 2.6E-02	c** 4.5E-02 c				
9.1E-01 C 2.6E-04 C 1.1E-02 C 1.6E+00 I	1.4E-05 C 1	0.1	Nickelocene Nitrate (measured as nitrogen)	1271-28-9 14797-55-8	6.0E-01 1.3E+05	c 2.5E+0		1.1E-02 c	** 4.7E-02	c** 8.6E-02 c 3.2E+04 n	1.0E+04			
	i		Nitrate + Nitrite (measured as nitrogen)	E701177	1.02.00	1.52.0	0 11111			0.2L104 II	1.0E+04			
1.0E-01 I	1		Nitrite (measured as nitrogen)	14797-65-0	7.8E+03	n 1.2E+0				2.0E+03 n	1.0E+03			
	5.0E-05 X 1 6.0E-03 P 1	0.1 0.1	Nitroaniline, 2- Nitroaniline, 4-	88-74-4 100-01-6	6.3E+02 2.7E+01	n 8.0E+0 c** 1.1E+0			n 2.2E-01 n 2.6E+01	n 1.9E+02 n n 3.8E+00 c*		8.0E-02 1.6E-03	n c*	
	9.0E-03 I V 1		Nitrobenzene	98-95-3	5.1E+00	c* 2.2E+0		7.0E-02	3.1E-01	c 1.4E-01 c*		9.2E-05	c*	
3.0E+03 P	1	0.1	Nitrocellulose	9004-70-0		nm 2.5E+0				6.0E+07 n		1.3E+04	n	
7.0E-02 H 1.3E+00 C 3.7E-04 C	1	0.1 0.1	Nitrofurantoin Nitrofurazone	67-20-9 59-87-0	4.4E+03 4.2E-01	n 5.7E+0 c 1.8E+0		7.6E-03	3.3E-02	1.4E+03 n c 6.0E-02 c		6.1E-01 5.4E-05	n C	
1.7E-02 P 1.0E-04 P	1	0.1	Nitroglycerin	55-63-0	6.3E+00	n 8.2E+0	1 n			2.0E+00 n		8.5E-04	n	
1.0E-01 I 8.8E-06 P	5.0E-03 P V 1	0.1	Nitroguanidine Nitromethane	556-88-7 75-52-5	6.3E+03 5.4E+00	n 8.2E+0 c* 2.4E+0		3.2E-01 d	* 1.4E+00	2.0E+03 n c* 6.4E-01 c*		4.8E-01 1.4E-04	n o*	
	5.0E-03 P V 1 2.0E-02 I V 1		Nitromethane Nitropropane, 2-	75-52-5 79-46-9	5.4E+00 6.4E-02	c* 2.4E+0 c 2.8E-0			1.4E+00 2.1E-02	c* 6.4E-01 c* c 9.7E-03 c		1.4E-04 2.5E-06	c*	
2.7E+01 C 7.7E-03 C	M 1	0.1	Nitroso-N-ethylurea, N-	759-73-9	4.5E-03	c 8.5E-02	2 с	1.3E-04 (1.6E-03	c 9.2E-04 c		2.2E-07	c	
1.2E+02 C 3.4E-02 C 5.4E+00 I 1.6E-03 I	M 1	0.1	Nitroso-N-methylurea, N- Nitroso-di-N-butylamine, N-	684-93-5 924-16-3	1.0E-03 9.9E-02	c 1.9E-02		3.0E-05 (3.6E-04 7.7E-03	c 2.1E-04 c		4.6E-08 5.5E-06	C C	
7.0E+00 I 1.6E-03 I 7.0E+00 I 2.0E-03 C	v 1	0.1	Nitroso-di-N-propylamine, N-	924-16-3 621-64-7	9.9E-02 7.8E-02	c 4.6E-0°			7.7E-03 6.1E-03	c 2.7E-03 c c 1.1E-02 c		8.1E-06	C C	
2.8E+00 I 8.0E-04 C	1	0.1	Nitrosodiethanolamine, N-	1116-54-7	1.9E-01	c 8.2E-0	1 c	3.5E-03	1.5E-02	c 2.8E-02 c		5.6E-06	С	
1.5E+02 4.3E-02 5.1E+01 1.4E-02 8.0E-06 P	M 1 4.0F-05 X V M 1	0.1	Nitrosodiethylamine, N- Nitrosodimethylamine, N-	55-18-5 62-75-9	8.1E-04 2.0E-03	c 1.5E-02 c 3.4E-02				c 1.7E-04 c c 1.1E-04 c		6.1E-08 2.7F-08	C C	
4.9E-03 2.6E-06 C	4.0E400 A V IVI 1	0.1	Nitrosodiphenylamine, N-	86-30-6	1.1E+02	c 4.7E+0		1.1E+00	4.7E+00	c 1.1E-04 c		6.7E-08	С	
2.2E+01 I 6.3E-03 C	V 1	1.1E+05	Nitrosomethylethylamine, N-	10595-95-6	2.0E-02	c 9.1E-02	2 c	4.5E-04	1.9E-03	c 7.1E-04 c		2.0E-07	С	
6.7E+00 C 1.9E-03 C 9.4E+00 C 2.7E-03 C	1	0.1 0.1	Nitrosomorpholine [N-] Nitrosopiperidine [N-]	59-89-2 100-75-4	8.1E-02 5.8E-02	c 3.4E-0°		1.5E-03 1.0E-03	6.5E-03 4.5E-03	c 1.2E-02 c c 8.2E-03 c		2.8E-06 4.4E-06	С	
9.4E+00 C 2.7E-03 C 2.1E+00 I 6.1E-04 I	1	0.1	Nitrosopiperiaine (N-) Nitrosopyrrolidine, N-	930-55-2		c 2.4E-0				c 8.2E-03 c		4.4E-05	C C	
1.0E-04 X	1	0.1	Nitrotoluene, m-	99-08-1	6.3E+00	n 8.2E+0	1 n			1.7E+00 n		1.6E-03	n	
2.2E-01 P 9.0E-04 P 1.6E-02 P 4.0E-03 P	V 1	1.5E+03 0.1	Nitrotoluene, o- Nitrotoluene, p-	88-72-2 99-99-0	3.2E+00 3.4F+01	c* 1.5E+0				3.1E-01 c* 4.3E+00 c*		3.0E-04 4.0E-03	c*	
	2.0E-02 P V 1		Nonane, n-	111-84-2		ns 7.2E+0		2.1E+01 i	n 8.8E+01	n 5.3E+00 c		7.5E-02	n n	
1.5E-02 O	1	0.1	Norflurazon	27314-13-2	9.5E+02	n 1.2E+0	4 n			2.9E+02 n		1.9E+00	n	
3.0E-03 I 5.0E-02 I	1	0.1 0.006	Octabromodiphenyl Ether Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	32536-52-0 2691-41-0		n 2.5E+0 n 5.7E+0				6.0E+01 n 1.0E+03 n		1.2E+01 1.3E+00	n n	
5.0E-02 T 2.0E-03 H	1	0.006	Octanydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) Octamethylpyrophosphoramide	2691-41-0 152-16-9	3.9E+03 1.3E+02	n 5.7E+0				1.0E+03 n 4.0E+01 n		9.6E-03	n	
7.8E-03 O 1.4E-01 O	1	0.1	Oryzalin	19044-88-3	7.0E+01	c 2.9E+0	2 c			7.9E+00 c		1.5E-02	c	
5.0E-03 I	1	0.1	Oxadiazon	19666-30-9	3.2E+02	n 4.1E+0	3 n			4.7E+01 n		4.8E-01	n	

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H	HEAST; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; \ limit exceeded; s = Csat exce		R = RBA applied; c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; r	m = ceiling
Toxicity and Chemical-specific Information	Contaminant	eded.	Screening Levels Protection of Ground W	ater SSLs
SFO e IUR e RfD e RfC e o	C _{saf}		Resident Soil Industrial Soil Resident Air Industrial Air Tapwater MCL SSL MC	CL-based SSL
(mg/kg-day) ⁻¹ y (ug/m ³) ⁻¹ y (mg/kg-day) y (mg/m ³) y I mutagen GIABS ABS ₄		CAS No.	resident doil industrial doil industrial doil	(mg/kg)
2.5E-02 I 1 0.1	Oxamyl	23135-22-0	-0 1.6E+03 n 2.1E+04 n 5.0E+02 n 2.0E+02 1.1E-01 n 4	4.4E-02
7.3E-02 O 3.0E-02 O 1 0.1	Oxyfluorfen	42874-03-3		
1.3E-02 I 1 0.1 4.5E-03 I 1 0.1	Paclobutrazol Paraquat Dichloride	76738-62-0 1910-42-5		
6.0E-03 H 1 0.1	Parathion	56-38-2	3.8E+02 n 4.9E+03 n 8.6E+01 n 4.3E-01 n	
5.0E-02 H V 1	Pebulate	1114-71-2	2 3.9E+03 n 5.8E+04 n 5.6E+02 n 4.5E-01 n	
3.0E-01 O 1 0.1	Pendimethalin	40487-42-1		
2.0E-03 I V 1 1.0E-04 I 1 0.1	1E-01 Pentabromodiphenyl Ether Pentabromodiphenyl ether, 2,2',4,4',5- (BDE-99)	32534-81-9 60348-60-9		
8.0E-04 I V 1	Pentachlorobenzene	608-93-5	6.3E+01 n 9.3E+02 n 3.2E+00 n 2.4E-02 n	
	6E+02 Pentachloroethane	76-01-7	7.7E+00 c 3.6E+01 c 6.5E-01 c 3.1E-04 c	
2.6E-01 H 3.0E-03 I V 1 4.0E-01 I 5.1E-06 C 5.0E-03 I 1 0.25	Pentachloronitrobenzene Pentachlorophenol	82-68-8 87-86-5	2.7E+00 c* 1.3E+01 c 1.2E-01 c 1.5E-03 c 1.0E+00 c 4.0E+00 c 5.5E-01 c 2.4E+00 c 4.1E-02 c 1.0E+00 5.7E-05 c 1	1.4E-03
4.0E-03 X 2.0E-03 P 1 0.1	Pentaerythritol tetranitrate (PETN)	78-11-5	1.3E+02 n 5.7E+02 c** 1.9E+01 c** 2.8E-02 c**	1.4L=03
1.0E-04 X 1 0.1	Pentamethylphosphoramide (PMPA)	10159-46-3	-3 6.3E+00 n 8.2E+01 n 2.0E+00 n 4.1E-04 n	
1.0E+00 P V 1	9E+02 Pentane, n-	109-66-0	8.1E+02 ns 3.4E+03 ns 1.0E+03 n 4.4E+03 n 2.1E+03 n 1.0E+01 n	
7.0F-04 I 1	Perchlorates ~Ammonium Perchlorate	7790-98-9	5.5F+01 n 8.2F+02 n 1.4F+01 n	
7.0E-04 I 1	~Lithium Perchlorate	7791-03-9	9 5.5E <mark>+0</mark> 1 n 8.2E+02 n 1.4E+01 n	
7.0E-04 I 1	~Perchlorate and Perchlorate Salts	14797-73-0	-0 5.5E+01 n 8.2E+02 n 1.4E+01 n 1.5E+01(G)	
7.0E-04 I 1	~Potassium Perchlorate ~Sodium Perchlorate	7778-74-7 7601-89-0		
7.0E-04 I 1 2.0E-02 P 1 0.1	Perfluorobutane sulfonic acid (PFBS)	375-73-5		
2.0E-02 P 1 0.1	Perfluorobutanesulfonate	45187-15-3	3 1.3E+03 n 1.6E+04 n 4.0E+02 n 1.3E-01 n	
5.0E-02 I 1 0.1	Permethrin	52645-53-1		
2.2E-03 C 6.3E-07 C 1 0.1 2.4E-01 O 1 0.1	Phenacetin Phenmedipham	62-44-2 13684-63-4	2.5E+02 c 1.0E+03 c 4.5E+00 c 1.9E+01 c 3.4E+01 c 9.7E-03 c	
3.0E-01 I 2.0E-01 C 1 0.1	Phenol	108-95-2	1.9E+04 n 2.5E+05 nm 2.1E+02 n 8.8E+02 n 5.8E+03 n 3.3E+00 n	
4.0E-03 I 1 0.1	Phenol, 2-(1-methylethoxy)-, methylcarbamate	114-26-1	2.5E+02 n 3.3E+03 n 7.8E+01 n 2.5E-02 n	
5.0E-04 X 1 0.1	Phenothiazine	92-84-2	3.2E+01 n 4.1E+02 n 4.3E+00 n 1.4E-02 n 1.6E+01 n 2.3E+02 ns 2.6E+00 n 1.7E-03 n	
2.0E-04 X V 1 6.0E-03 I 1 0.1	3E+02 Phenyl Isothiocyanate Phenylenediamine, m-	103-72-0 108-45-2	1.6E+01 n 2.3E+02 ns 2.6E+00 n 1.7E-03 n 3.8E+02 n 4.9E+03 n 1.2E+02 n 3.2E-02 n	
1.2E-01 P 4.0E-03 P 1 0.1	Phenylenediamine, o-	95-54-5	4.5E+00 c* 1.9E+01 c 6.5E-01 c 1.7E-04 c	
1.0E-03 X 1 0.1	Phenylenediamine, p-	106-50-3	6.3E+01 n 8.2E+02 n 2.0E+01 n 5.4E-03 n	
1.9E-03 H 1 0.1 2.0E-04 H 1 0.1	Phenylphenol, 2- Phorate	90-43-7 298-02-2	2.8E+02 c 1.2E+03 c 3.0E+01 c 4.1E-01 c 1.3E+01 n 1.6E+02 n 3.0E+00 n 3.4E-03 n	
	Phosgene	75-44-5	3.1E-01 n 1.3E+00 n 3.1E-01 n 1.3E+00 n 6.3E-01 n 1.6E-04 n	
2.0E-02 I 1 0.1	Phosmet	732-11-6	1.3E+03 n 1.6E+04 n 3.7E+02 n 8.2E-02 n	
4.9E+01 P 1	Phosphates, Inorganic	13776-88-0	-0 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Aluminum metaphosphate ~Ammonium polyphosphate	68333-79-9		
4.9E+01 P 1	~Calcium pyrophosphate	7790-76-3	3 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Diammonium phosphate	7783-28-0		
4.9E+01 P 1 4.9E+01 P 1	~Dicalcium phosphate ~Dimagnesium phosphate	7757-93-9 7782-75-4		
4.9E+01 P 1	~Dipotassium phosphate	7758-11-4		
4.9E+01 P 1	~Disodium phosphate	7558-79-4		
4.9E+01 P 1 4.9E+01 P 1	~Monoaluminum phosphate ~Monoammonium phosphate	13530-50-2 7722-76-1		
4.9E+01 P 1	~Monocalcium phosphate	7758-23-8		
4.9E+01 P 1	~Monomagnesium phosphate	7757-86-0	3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1 4.9E+01 P 1	~Monopotassium phosphate	7778-77-0		
4.9E+01 P 1 4.9E+01 P 1	~Monosodium phosphate ~Polyphosphoric acid	7558-80-7 8017-16-1		
4.9E+01 P 1	~Potassium tripolyphosphate	13845-36-8	-8 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Sodium acid pyrophosphate	7758-16-9		
4.9E+01 P 1 4.9E+01 P 1	~Sodium aluminum phosphate (acidic) ~Sodium aluminum phosphate (anhydrous)	7785-88-8 10279-59-1	3 3.8E+06 nm 5.7E+07 nm 9.7E+05 n -1 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Sodium aluminum phosphate (tetrahydrate)	10305-76-7	-7 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Sodium hexametaphosphate	10124-56-8	-8 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1 4.9E+01 P 1	~Sodium polyphosphate	68915-31-1		
4.9E+01 P 1 4.9E+01 P 1	~Sodium trimetaphosphate ~Sodium tripolyphosphate	7785-84-4 7758-29-4		
4.9E+01 P 1	~Tetrapotassium phosphate	7320-34-5	5 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Tetrasodium pyrophosphate	7722-88-5		
4.9E+01 P 1 4.9E+01 P 1	~Trialuminum sodium tetra decahydrogenoctaorthophosphate (dihydrate) ~Tricalcium phosphate	15136-87-5 7758-87-4		
4.9E+01 P 1	~Trimagnesium phosphate	7757-87-1	1 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1	~Tripotassium phosphate	7778-53-2	2 3.8E+06 nm 5.7E+07 nm 9.7E+05 n	
4.9E+01 P 1 3.0E-04 3.0E-04 V 1	~Trisodium phosphate	7601-54-9		
3.0E-04 3.0E-04 V 1 4.9E+01 P 1.0E-02 1	Phosphine Phosphoric Acid	7803-51-2 7664-38-2		
2.0E-05 I V 1	Phosphorus, White	7723-14-0		
4.45.00 1.0.45.00 0.05.00	Phthalates	447.64.7	2.05.04 -+ 4.05.00 - 4.05.00 - 5.45.00	45.00
1.4E-02 2.4E-06 C 2.0E-02 1 0.1 1.9E-03 P 2.0E-01 1 0.1	~Bis(2-ethylhexyl)phthalate ~Butyl Benzyl Phthalate	117-81-7 85-68-7	3.9E+01 c* 1.6E+02 c 1.2E+00 c 5.1E+00 c 5.6E+00 c* 6.0E+00 1.3E+00 c* 1 2.9E+02 c* 1.2E+03 c 1.6E+01 c 2.4E-01 c	1.4E+00
1.0E+00 I 1 0.1	~Butylphthalyl Butylglycolate	85-70-1	6.3E+04 n 8.2E+05 nm 1.3E+04 n 3.1E+02 n	

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H =	EAST; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V	= volatile; R = F	= RBA applied; c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = ceiling
Toxicity and Chemical-specific Information	limit exceeded; s = Csat exceed Contaminant	ied.	Screening Levels Protection of Ground Water SSLs
SFO e IUR e RfD e RfC e o	nat tea		Resident Soil Industrial Soil Resident Air Industrial Air Tapwater MCL SSL SSL SSL
	/kg) Analyte	CAS No.	
1.0E-01 I 1 0.1	~Dibutyl Phthalate	84-74-2	6.3E+03 n 8.2E+04 n 9.0E+02 n 2.3E+00 n
8.0E-01 I 1 0.1 1.0E-01 I V 1	~Diethyl Phthalate ~Dimethylterephthalate	84-66-2 120-61-6	5.1E+04 n 6.6E+05 nm 1.5E+04 n 6.1E+00 n 7.8E+03 n 1.2E+05 nm 1.9E+03 n 4.9E-01 n
1.0E-02 P 1 0.1	~Octyl Phthalate, di-N-	117-84-0	6.3E+02 n 8.2E+03 n 2.0E+02 n 5.7E+01 n
5.0E-01 X 1 0.1 2.0E+00 I 2.0E-02 C 1 0.1	~Phthalic Acid, p- ~Phthalic Anhydride	100-21-0 85-44-9	3.2E+04 n 4.1E+05 nm 9.4E+03 n 3.4E+00 n 1.3E+05 nm 1.6E+06 nm 2.1E+01 n 8.8E+01 n 3.9E+04 n 8.5E+00 n
7.0E-02 I 1 0.1	Picloram	1918-02-1	1.3E+05 nm 1.6E+06 nm 2.1E+01 n 8.8E+01 n 3.9E+04 n 8.5E+00 n 4.4E+03 n 5.7E+04 n 1.4E+03 n 5.0E+02 3.8E-01 n 1.4E-01
1.0E-04 X 1 0.1	Picramic Acid (2-Amino-4,6-dinitrophenol)	96-91-3	6.3E+00 n 8.2E+01 n 2.0E+00 n 1.3E-03 n
2.0E-03 X 1 0.1 7.0E-05 O 1 0.1	Picric Acid (2,4,6-Trinitrophenol) Pirimiphos, Methyl	88-89-1 29232-93-7	1.3E+02 n 1.6E+03 n 4.0E+01 n 1.9E-01 n 1.9E-01 n 8.1E-04 n
3.0E+01 C 8.6E-03 C 7.0E-06 H 1 0.1	Polybrominated Biphenyls	36355-01-8	
7.0E-02 G 2.0E-05 G 7.0E-05 I V 1 0.14	Polychlorinated Biphenyls (PCBs) ~Aroclor 1016	12674-11-2	2 4.1E+00 n 2.7E+01 c** 1.4E-01 c 6.1E-01 c 2.2E-01 c**
7.0E-02 G 2.0E-03 G 7.0E-03 I V I 0.14 2.0E+00 G 5.7E-04 G V 1 0.14	~Aroclor 1016 ~Aroclor 1221	11104-28-2	2 2.0E-01 c 8.3E-01 c 4.9E-03 c 2.1E-02 c 4.7E-03 c 8.0E-05 c
2.0E+00 G 5.7E-04 G V 1 0.14	~Aroclor 1232	11141-16-5	5 1.7E-01 c 7.2E-01 c 4.9E-03 c 2.1E-02 c 4.7E-03 c 8.0E-05 c
2.0E+00 G 5.7E-04 G V 1 0.14 2.0E+00 G 5.7E-04 G V 1 0.14	~Aroclor 1242 ~Aroclor 1248	53469-21-9 12672-29-6	
2.0E+00 G 5.7E-04 G 2.0E-05 I V 1 0.14	~Aroclor 1254	11097-69-1	1 2.4E-01 c** 9.7E-01 c* 4.9E-03 c 2.1E-02 c 7.8E-03 c* 2.0E-03 c*
2.0E+00 G 5.7E-04 G V 1 0.14 6.0E-04 X V 1 0.14	~Aroclor 1260 ~Aroclor 5460	11096-82-5 11126-42-4	
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)	39635-31-9	9 1.3E-01 c* 5.2E-01 c* 2.5E-03 c 1.1E-02 c 4.0E-03 c 2.8E-03 c
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)	52663-72-6	6 1.2E-01 c* 5.1E-01 c* 2.5E-03 c 1.1E-02 c 4.0E-03 c 1.7E-03 c
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14 3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157) ~Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)	69782-90-7 38380-08-4	7
3.9E+03 W 1.1E+00 W 2.3E-08 W 1.3E-06 W V 1 0.14	~Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)	32774-16-6	6 1.2E-04 c* 5.1E-04 c* 2.5E-06 c 1.1E-05 c 4.0E-06 c 1.7E-06 c
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14 3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123) ~Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)	65510-44-3 31508-00-6	
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14 3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Pentachlorobiphenyl, 2,3,4,4,5- (PCB 116) ~Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)	32598-14-4	
3.9E+00 W 1.1E-03 W 2.3E-05 W 1.3E-03 W V 1 0.14	~Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)	74472-37-0	
1.3E+04 W 3.8E+00 W 7.0E-09 W 4.0E-07 W V 1 0.14 2.0E+00 I 5.7E-04 I V 1 0.14	~Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126) ~Polychlorinated Biphenyls (high risk)	57465-28-8 1336-36-3	8 3.6E-05 c* 1.5E-04 c* 7.4E-07 c 3.2E-06 c 1.2E-06 c 3.0E-07 c 2.3E-01 c 9.4E-01 c 4.9E-03 c 2.1E-02 c 5.0E-01
4.0E-01 1.0E-04 V 1 0.14	~Polychlorinated Biphenyls (low risk)	1336-36-3	2.8E-02 c 1.2E-01 c 4.4E-02 c 5.0E-01 6.8E-03 c 7.8E-02
7.0E-02 2.0E-05 V 1 0.14 1.3E+01 W 3.8E-03 W 7.0E-06 W 4.0E-04 W 1 0.14	~Polychlorinated Biphenyls (lowest risk) ~Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	1336-36-3 32598-13-3	
3.9E+01 W 1.1E-02 W 2.3E-06 W 1.3E-04 W V 1 0.14	~Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)	70362-50-4	
6.0E-04 I 1 0.1	Polymeric Methylene Diphenyl Diisocyanate (PMDI) Polynuclear Aromatic Hydrocarbons (PAHs)	9016-87-9	8.5E+05 nm 3.6E+06 nm 6.3E-01 n 2.6E+00 n
6.0E-02 I V 1 0.13	~Acenaphthene	83-32-9	3.6E+03 n 4.5E+04 n 5.3E+02 n 5.5E+00 n
3.0E-01 I V 1 0.13	~Anthracene	120-12-7	1.8E+04 n 2.3E+05 nm 1.8E+03 n 5.8E+01 n
1.0E-01 E 6.0E-05 E V M 1 0.13 1.2E+00 C 1.1E-04 C 1 0.13	~Benz[a]anthracene ~Benzo(j)fluoranthene	56-55-3 205-82-3	1.1E+00 c 2.1E+01 c 1.7E-02 c 2.0E-01 c 3.0E-02 c 1.1E-02 c 4.2E-01 c 1.8E+00 c 2.6E-02 c 1.1E-01 c 6.5E-02 c 7.8E-02 c
1.0E+00 6.0E-04 3.0E-04 2.0E-06 M 1 0.13	~Benzo[a]pyrene	50-32-8	1.1E-01 c 2.1E+00 c 1.7E-03 c** 8.8E-03 n 2.5E-02 c 2.0E-01 2.9E-02 c 2.4E-01
1.0E-01 E 6.0E-05 E M 1 0.13 1.0E-02 E 6.0E-06 E M 1 0.13	~Benzo[b]fluoranthene ~Benzo[k]fluoranthene	205-99-2 207-08-9	1.1E+00
8.0E-02 I V 1 0.13	~Chloronaphthalene, Beta-	91-58-7	4.8E+03 n 6.0E+04 n 7.5E+02 n 3.9E+00 n
1.0E-03 E 6.0E-07 E M 1 0.13 1.0E+00 E 6.0E-04 E M 1 0.13	~Chrysene ~Dibenz[a,h]anthracene	218-01-9 53-70-3	1.1E+02 c 2.1E+03 c 1.7E+00 c 2.0E+01 c 2.5E+01 c 9.0E+00 c 1.1E-01 c 2.1E+00 c 1.7E-03 c 2.0E-02 c 2.5E-02 c 9.6E-02 c
1.2E+01 C 1.1E-03 C 1 0.13	~Dibenzo(a,e)pyrene	192-65-4	4.2E-02 c 1.8E-01 c 2.6E-03 c 1.1E-02 c 6.5E-03 c 8.4E-02 c
2.5E+02 C 7.1E-02 C M 1 0.13 4.0E-02 I 1 0.13	~Dimethylbenz(a)anthracene, 7,12-	57-97-6 206-44-0	4.6E-04 c 8.4E-03 c 1.4E-05 c 1.7E-04 c 1.0E-04 c 9.9E-05 c 2.4E+03 n 3.0E+04 n 8.0E+02 n 8.9E+01 n
4.0E-02 I V 1 0.13 4.0E-02 I V 1 0.13	~Fluoranthene ~Fluorene	86-73-7	2.4E+03 n 3.0E+04 n 8.0E+02 n 8.9E+01 n 2.4E+03 n 3.0E+04 n 2.9E+02 n 5.4E+00 n
1.0E-01 E 6.0E-05 E M 1 0.13	~Indeno[1,2,3-cd]pyrene	193-39-5	1.1E+00 c 2.1E+01 c 1.7E-02 c 2.0E-01 c 2.5E-01 c 9.8E-01 c
2.9E-02 P 7.0E-02 A V 1 0.13 3. 4.0E-03 I V 1 0.13	E+02 ~Methylnaphthalene, 1- ~Methylnaphthalene, 2-	90-12-0 91-57-6	1.8E+01 c 7.3E+01 c 1.1E+00 c 6.0E-03 c 2.4E+02 n 3.0E+03 n 3.6E+01 n 1.9E-01 n
1.2E-01 C 3.4E-05 C 2.0E-02 I 3.0E-03 I V 1 0.13	~Naphthalene	91-20-3	2.0E+00 c* 8.6E+00 c* 8.3E-02 c* 3.6E-01 c* 1.2E-01 c* 3.8E-04 c*
1.2E+00 C 1.1E-04 C 1 0.13 3.0E-02 I V 1 0.13	~Nitropyrene, 4-	57835-92-4 129-00-0	4 4.2E-01 c 1.8E+00 c 2.6E-02 c 1.1E-01 c 1.9E-02 c 3.3E-03 c 1.8E+03 n 2.3E+04 n 1.2E+02 n 1.3E+01 n
2.0E-02 P 1 0.1	Potassium Perfluorobutane Sulfonate	29420-49-3	3 1.3E+03 n 1.6E+04 n 4.0E+02 n
1.5E-01 I 9.0E-03 I 1 0.1	Prochloraz	67747-09-5	5 3.6E+00 c 1.5E+01 c 3.8E-01 c 1.9E-03 c
6.0E-03 H V 1 1.5E-02 I 1 0.1	Profluralin Prometon	26399-36-0 1610-18-0	
4.0E-02 O 1 0.1	Prometryn	7287-19-6	2.5E+03 n 3.3E+04 n 6.0E+02 n 9.0E-01 n
7.5E-02 I 1 0.1 1.3E-02 I 1 0.1	Pronamide Propachlor	23950-58-5 1918-16-7	5 4.7E+03 n 6.2E+04 n 1.2E+03 n 1.2E+00 n 8.2E+02 n 1.1E+04 n 2.5E+02 n 1.5E-01 n
5.0E-03 I 1 0.1	Propanil	709-98-8	3.2E+02 n 4.1E+03 n 8.2E+01 n 4.5E-02 n
1.9E-01 O 4.0E-02 O 1 0.1 2.0E-03 I V 1 1.	Propargite	2312-35-8 107-19-7	2.8E+00 c 1.2E+01 c 1.6E-01 c 1.1E-02 c 1.6E+02 n 2.3E+03 n 4.0E+01 n 8.1E-03 n
2.0E-03 I V 1 1. 2.0E-02 I 1 0.1	E+05 Propargyl Alcohol Propazine	107-19-7	1.6E+02 n 2.3E+03 n 4.0E+01 n 8.1E-03 n 1.3E+03 n 1.6E+04 n 3.4E+02 n 3.0E-01 n
2.0E-02 I 1 0.1	Propham	122-42-9	1.3E+03 n 1.6E+04 n 3.5E+02 n 2.2E-01 n
1.0E-01 O 1 0.1 8.0E-03 I V 1 3.	Propiconazole E+04 Propionaldehyde	60207-90-1 123-38-6	1 6.3E+03 n 8.2E+04 n 1.6E+03 n 5.3E+00 n 7.5E+01 n 3.1E+02 n 8.3E+00 n 3.5E+01 n 1.7E+01 n 3.4E-03 n
1.0E-01 X 1.0E+00 X V 1 2.	+02 Propyl benzene	103-65-1	3.8E+03 ns 2.4E+04 ns 1.0E+03 n 4.4E+03 n 6.6E+02 n 1.2E+00 n
3.0E+00 C V 1 3. 2.0E+01 P 1 0.1	E+02 Propylene Propylene Glycol	115-07-1 57-55-6	2.2E+03 ns 9.3E+03 ns 3.1E+03 n 1.3E+04 n 6.3E+03 n 6.0E+00 n 1.3E+06 nm 1.6E+07 nm 4.0E+05 n 8.1E+01 n
2.0E+01 P 1 0.1 2.7E-04 A 1 0.1	Propylene Glycol Dinitrate	6423-43-4	3.9E+05 nm 1.6E+06 nm 2.8E-01 n 1.2E+00 n
	E+05 Propylene Glycol Monomethyl Ether	107-98-2	4.1E+04 n 3.7E+05 nms 2.1E+03 n 8.8E+03 n 3.2E+03 n 6.5E-01 n 2.1E+00 c 9.7E+00 c 7.6E-01 c* 3.3E+00 c* 2.7E-01 c 5.6E-05 c
2.4E-01 3.7E-06 3.0E-02 V 1 7.	E+04 Propylene Oxide	75-56-9	2.1E+00 c 9.7E+00 c 7.6E-01 c* 3.3E+00 c* 2.7E-01 c 5.6E-05 c

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAS	T; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; V limit exceeded; s = Csat excee		BA applied; c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where	e n SL < 10X c SL; SSL values are based c	on DAF=1; m = ceiling
Toxicity and Chemical-specific Information	Contaminant	ueu.	Screening Levels		f Ground Water SSLs
SFO e IUR e RfD _o e RfC _i e o C _{sat}			Resident Soil Industrial Soil Resident Air Industrial Air	Tapwater MCL Risk-based	MCL-based SSL
(mg/kg-day) ⁻¹ y (ug/m ³) ⁻¹ y (mg/kg-day) y (mg/m ³) y I mutagen GIABS ABS _d (mg/kg)	Analyte	CAS No.	(mg/kg) key (mg/kg) key (ug/m³) key (ug/m³) key	(ug/L) key (ug/L) (mg/kg)	key (mg/kg)
	Pyridine	110-86-1	7.8E+01 n 1.2E+03 n	2.0E+01 n 6.8E-03	n
5.0E-04 I 1 0.1	Quinalphos	13593-03-8		5.1E+00 n 4.3E-02	n
3.0E+00 I 1 0.1 9.0E-03 I 1 0.1	Quinoline Quizalofop-ethyl	91-22-5 76578-14-8	1.8E-01 c 7.7E-01 c 5.7E+02 n 7.4E+03 n	2.4E-02 c 7.8E-05 1.2E+02 n 1.9E+00	C
9.0E-03 1 1 0.1 3.0E+04 A 1	Refractory Ceramic Fibers (units in fibers)	E715557	5.7E+02 n 7.4E+03 n 3.1E+04 G 1.3E+05 G	1.2E+02 H	n
3.0E-02 I 1 0.1	Resmethrin	10453-86-8		6.7E+01 n 4.2E+01	n
5.0E-02 H V 1	Ronnel	299-84-3		4.1E+02 n 3.7E+00	n
4.0E-03 I 1 0.1 2.2E-01 C 6.3E-05 C M 1 0.1	Rotenone Safrole	83-79-4 94-59-7		6.1E+01 n 3.2E+01 9.6E-02 c 5.9E-05	n C
5.0E-03 I 1	Selenious Acid	7783-00-8	3.9E+02 n 5.8E+03 n	1.0E+02 n	· ·
5.0E-03 I 2.0E-02 C 1	Selenium	7782-49-2	3.9E+02 n 5.8E+03 n 2.1E+01 n 8.8E+01 n	1.0E+02 n 5.0E+01 5.2E-01	n 2.6E-01
5.0E-03 C 2.0E-02 C 1 1.4E-01 O 1 0.1	Selenium Sulfide Sethoxydim	7446-34-6 74051-80-2	3.9E+02 n 5.8E+03 n 2.1E+01 n 8.8E+01 n 8.8E+03 n 1.1E+05 nm	1.0E+02 n 1.6E+03 n 1.4E+01	n
3.0E-03 C 1	Silica (crystalline, respirable)	7631-86-9	4.3E+06 nm 1.8E+07 nm 3.1E+00 n 1.3E+01 n	1.02+03 11	"
5.0E-03 I 0.04	Silver	7440-22-4	3.9E+02 n 5.8E+03 n	9.4E+01 n 8.0E-01	n
1.2E-01 H 5.0E-03 I 1 0.1	Simazine	122-34-9		6.1E-01 c 4.0E+00 3.0E-04	c 2.0E-03
1.3E-02 I 1 0.1 4.0E-03 I 1	Sodium Acifluorfen Sodium Azide	62476-59-9 26628-22-8		2.6E+02 n 8.0E+01 n	n
2.7E-01 H 3.0E-02 I 1 0.1	Sodium Diethyldithiocarbamate	148-18-5	2.0E+00 c 8.5E+00 c	2.9E-01 c 1.8E-04	С
5.0E-02 A 1.3E-02 C 1	Sodium Fluoride	7681-49-4	3.9E+03 n 5.8E+04 n 1.4E+01 n 5.7E+01 n	1.0E+03 n 4.0E+03 1.5E+02	n 6.0E+02
2.0E-05 I 1 0.1 1.0E-03 H 1	Sodium Fluoroacetate Sodium Metavanadate	62-74-8 13718-26-8	1.3E+00 n 1.6E+01 n 7.8E+01 n 1.2E+03 n	4.0E-01 n 8.1E-05 2.0E+01 n	n
8.0E-04 P 1	Sodium Tungstate	13472-45-2	6.3E+01 n 9.3E+02 n	1.6E+01 n	
8.0E-04 P 1	Sodium Tungstate Dihydrate	10213-10-2	6.3E+01 n 9.3E+02 n	1.6E+01 n	
2.4E-02 H 3.0E-02 I 1 0.1 6.0E-01 I 1	Stirofos (Tetrachlorovinphos) Strontium, Stable	961-11-5 7440-24-6	2.3E+01 c* 9.6E+01 c 4.7E+04 n 7.0E+05 nm	2.8E+00 c 8.2E-03 1.2E+04 n 4.2E+02	c n
3.0F-04 I 1 0.1	Strontium, Stable Strychnine	7440-24-6 57-24-9	1.9E+01 n 2.5E+02 n	5.9E+00 n 4.2E+02	n n
2.0E-01 1.0E+00 V 1 8.7E+02	Styrene	100-42-5		1.2E+03 n 1.0E+02 1.3E+00	n 1.1E-01
3.0E-03 P 1 0.1	Styrene-Acrylonitrile (SAN) Trimer (THNA isomer)	57964-39-3		4.8E+01 n	
3.0E-03 P 1 0.1 1.0E-03 P 2.0E-03 X 1 0.1	Styrene-Acrylonitrile (SAN) Trimer (THNP isomer)	57964-40-6 126-33-0	1.9E+02 n 2.5E+03 n 6.3E+01 n 8.2E+02 n 2.1E+00 n 8.8E+00 n	4.8E+01 n 2.0E+01 n 4.4E-03	n
8.0E-04 P 1 0.1	Sulfonylbis(4-chlorobenzene), 1,1'-	80-07-9	5.1E+01 n 6.6E+02 n	1.1E+01 n 6.5E-02	n
1.0E-03 C V 1	Sulfur Trioxide	7446-11-9		2.1E+00 n	
1.0E-03 C 1 2.5E-02 7.1E-06 5.0E-02 H 1 0.1	Sulfuric Acid	7664-93-9	1.4E+06 nm 6.0E+06 nm 1.0E+00 n 4.4E+00 n 2.2E+01 c 9.2E+01 c 4.0E-01 c 1.7E+00 c	135100 0 155.00	С
2.5E-02 7.1E-06 5.0E-02 H	Sulfurous acid, 2-chloroethyl 2-[4-(1,1-dimethylethyl)phenoxy]-1-methylethyl ester TCMTB	140-57-8 21564-17-0		1.3E+00 c 1.5E-02 4.8E+02 n 3.3E+00	n c
7.0E-02 I 1 0.1	Tebuthiuron	34014-18-1	4.4E+03 n 5.7E+04 n	1.4E+03 n 3.9E-01	n
2.0E-02 H 1 0.1	Temephos Tembrasit	3383-96-8		4.0E+02 n 7.6E+01	n -
1.3E-02 I 1 0.1 2.5E-05 H V 1 3.1E+01	Terbacil Terbufos	5902-51-2 13071-79-9	8.2E+02 n 1.1E+04 n 2.0E+00 n 2.9E+01 n	2.5E+02 n 7.5E-02 2.4E-01 n 5.2E-04	n n
1.0E-03 I 1 0.1	Terbutryn	886-50-0	6.3E+01 n 8.2E+02 n	1.3E+01 n 1.9E-02	n
5.0E-03 C 1.3E-06 C V 1	Tert-Butyl Acetate	540-88-5		3.3E+00 c 7.6E-04	С
1.0E-04 I 1 0.1 3.0E-04 I V 1	Tetrabromodiphenyl ether, 2,2',4,4'- (BDE-47) Tetrachlorobenzene, 1,2,4,5-	5436-43-1 95-94-3	6.3E+00 n 8.2E+01 n 2.3E+01 n 3.5E+02 n	2.0E+00 n 5.3E-02 1.7E+00 n 7.9E-03	n n
	Tetrachloroethane, 1,1,1,2-	630-20-6		5.7E-01 c 2.2E-04	c
2.0E-01 5.8E-05 C 2.0E-02 V 1 1.9E+03	Tetrachloroethane, 1,1,2,2-	79-34-5	6.0E-01 c 2.7E+00 c 4.8E-02 c 2.1E-01 c	7.6E-02 c 3.0E-05	C
2.1E-03 2.6E-07 6.0E-03 4.0E-02 V 1 1.7E+02 3.0E-02 1 0.1	Tetrachloroethylene Tetrachlorophenol, 2,3,4,6-	127-18-4 58-90-2		1.1E+01 c** 5.0E+00 5.1E-03 2.4E+02 n 1.8E-01	c** 2.3E-03
1.6E+01 X 6.0E-05 X V 1	Tetrachiorotoluene, p- alpha, alpha, alpha-	5216-25-1	4.3E-02 c 2.0E-01 c	1.7E-03 c 5.7E-06	C
5.0E-04 I 1 0.1	Tetraethyl Dithiopyrophosphate	3689-24-5	3.2E+01 n 4.1E+02 n	7.1E+00 n 5.2E-03	n
8.0E+01 V	Tetrafluoroethane, 1,1,1,2- Tetramethylphosphoramide, -N,N,N',N'' (TMPA)	811-97-2 16853-36-4		1.7E+05 n 9.3E+01 2.0E+00 n	n
2.0E-03 P 1 0.00065	Tetryl (Trinitrophenylmethylnitramine)	479-45-8	1.6E+02 n 2.3E+03 n	3.9E+01 n 3.7E-01	n
2.0E-05 G 1	Thallic Oxide	1314-32-5	1.6E+00 n 2.3E+01 n	4.0E-01 n	
1.0E-05 X 1 1.0F-05 X 1	Thallium (I) Nitrate Thallium (Soluble Salts)	10102-45-1 7440-28-0		2.0E-01 n 2.0E-01 n 2.0E+00 1.4E-02	n 1.4E-01
1.0E-05 X V 1	Thallium Acetate	563-68-8	7.8E-01 n 1.2E+01 n 7.8E-01 n 1.2E+01 n	2.0E-01 n 2.0E+00 1.4E-02 2.0E-01 n 4.1E-05	n 1.4E-01
2.0E-05 X V 1	Thallium Carbonate	6533-73-9	1.6E+00 n 2.3E+01 n	4.0E-01 n 8.3E-05	n
1.0E-05 X 1 1.0E-05 G 1	Thallium Chloride Thallium Selenite	7791-12-0 12039-52-0	7.8E-01 n 1.2E+01 n 7.8E-01 n 1.2E+01 n	2.0E-01 n 2.0E-01 n	
2.0E-05 X 1	Thallium Sulfate	7446-18-6	1.6E+00 n 2.3E+01 n	4.0E-01 n	
4.3E-02 O 1 0.1	Thifensulfuron-methyl	79277-27-3	2.7E+03 n 3.5E+04 n	8.6E+02 n 2.6E-01	n
1.0E-02 I 1 0.1 7.0E-02 X 1 0.0075	Thiodighed	28249-77-6	6.3E+02 n 8.2E+03 n	1.6E+02 n 5.5E-01	n
7.0E-02 X 1 0.0075 3.0E-04 H 1 0.1	Thiodiglycol Thiofanox	111-48-8 39196-18-4	5.4E+03 n 7.9E+04 n 1.9E+01 n 2.5E+02 n	1.4E+03 n 2.8E-01 5.3E+00 n 1.8E-03	n n
1.2E-02 O 2.7E-02 O 1 0.1	Thiophanate, Methyl	23564-05-8	4.7E+01 c* 2.0E+02 c	6.7E+00 c* 5.7E-03	c*
1.5E-02 O 1 0.1	Thiram	137-26-8		2.9E+02 n 4.2E-01	n -
6.0E-01 H 1 1.0E-04 A V 1	Tin Titanium Tetrachloride	7440-31-5 7550-45-0	4.7E+04 n 7.0E+05 nm 1.4E+05 nm 6.0E+05 nm 1.0E-01 n 4.4E-01 n	1.2E+04 n 2.1E-01 n	n
8.0E-02 5.0E+00 V 1 8.2E+02	Toluene	108-88-3	4.9E+03 ns 4.7E+04 ns 5.2E+03 n 2.2E+04 n	1.1E+03 n 1.0E+03 7.6E-01	n 6.9E-01
3.9E-02 C 1.1E-05 C 8.0E-06 C V 1	Toluene-2,4-diisocyanate	584-84-9	6.4E+00 n 2.7E+01 n 8.3E-03 n 3.5E-02 n	1.7E-02 n 2.5E-04	n
1.8E-01 X 2.0E-04 X 1 0.1 3.9E-02 C 1.1E-05 C 8.0E-06 C V 1 1.7E+03	Toluene-2,5-diamine Toluene-2,6-diisocyanate	95-70-5 91-08-7	3.0E+00 c** 1.3E+01 c* 5.3E+00 n 2.2E+01 n 8.3E-03 n 3.5E-02 n	4.3E-01 c** 1.3E-04 1.7E-02 n 2.6E-04	c** n
5.0E-03 P 1 0.1	Toluic Acid, p-	99-94-5		9.0E+01 n 2.3E-02	n
1.6E-02 P 5.1E-05 C 1 0.1	Toluidine, o- (Methylaniline, 2-)	95-53-4		4.7E+00 c 2.0E-03	С
3.0E-02 P 4.0E-03 X 1 0.1 3.0E+00 P V 1 3.4E-01	Toluidine, p- Total Petroleum Hydrocarbons (Aliphatic High)	106-49-0 E1790670	***************************************	2.5E+00 c* 1.1E-03 6.0E+04 n 2.4E+03	c*
3.4E-01	Total Fetroleum Hydrocarbons (Aliphatic High)	E1790070	Z.JETUJ IIIIS J.JETUU IIIIIS	0.0L+04 II 2.4E+03	11

	,,	AISDE	t, o – oui Li A	, A - FFF	KIV Screen	ning Leve	ei; H = HEAS	T; W = TEF applied; E = RPF applied; G = user's guide Section 5; M = mutagen; \ limit exceeded: s = Csat excee	′ = volatile; R = F	RBA applied ;	c = can	cer; n = nonc	ancer; 1	= wnere: n S	SL < 10	0X c SL; ** =	where	e n SL < 10X o	SL; SSL value	s are based o	n DAF=	:1; m = ceiling
	Toxicity a	nd Chen	nical-specific In	formation				Contaminant	ueu.					Screenin	ng Leve	ls					Ground	d Water SSLs
SFO 6	k k k e IUR e RfD.	k	RfC _i k	V			Coor			Resident So	it	Industrial So	sil	Resident Air	r	Industrial Air		Tapwater	MCL	Risk-based SSI		MCL-based SSI
	y (ug/m ³) ⁻¹ y (mg/kg-	day) y		I mutag	gen GIABS	ABS		Analyte	CAS No.	(mg/kg)	" key	(mg/kg)		(ug/m³)	key	(ug/m³)	key	(ug/L) key		(mg/kg)	key	(mg/kg)
			6.0E-01 P	V	1	1		Total Petroleum Hydrocarbons (Aliphatic Low)	E1790666	5.2E+02	ns	2.2E+03	ns	6.3E+02	n	2.6E+03	n	1.3E+03 n		8.8E+00	n	, , ,
			1.0E-01 P	V	1			Total Petroleum Hydrocarbons (Aliphatic Medium)	E1790668	9.6E+01	ns	4.4E+02	ns	1.0E+02	n	4.4E+02	n	1.0E+02 n		1.5E+00	n	
	4.0E-0		3.0E-02 P	.,	1	0.13	1.8F+03	Total Petroleum Hydrocarbons (Aromatic High)	E1790676 E1790672	2.4E+03 8.2F+01	n	3.0E+04	n	3.1F+01	n	1.3F+02		8.0E+02 n 3.3F+01 n		8.9E+01 1.7F-02	n	
	4.0E-0		3.0E-02 P		1	0.13		Total Petroleum Hydrocarbons (Aromatic Low) Total Petroleum Hydrocarbons (Aromatic Medium)	E1790672	9.7F+01	n n	4.2E+02 5.6F+02	n n	3.1E+01 3.1E+00	n n	1.3E+02 1.3E+01		5.5E+00 n		2.3E-02	n n	
1.1E+00	I 3.2E-04 I 9.0E-0		0.02 00 1	•	1	0.1		Toxaphene	8001-35-2	4.9E-01	c*	2.1E+00	c*	8.8E-03	c	3.8E-02		7.1E-02 c*	3.0E+00	1.1E-02	c*	4.6E-01
	3.0E-0				1	0.1		Toxaphene, Weathered	E1841606	1.9E+00	n	2.5E+01	n					6.0E-01 n		9.3E-02	n	
	7.5E-0 3.0E-0			v	1	0.1		Tralomethrin Tri-n-butvItin	66841-25-6 688-73-3	4.7E+02 2.3E+01	n n	6.2E+03 3.5E+02	n n					1.5E+02 n 3.7E+00 n		5.8E+01 8.2E-02	n n	
	8.0E+			v	1	0.1		Triacetin	102-76-1	5.1E+06	nm	6.6E+07	nm					1.6E+06 n		4.5E+02	n	
	3.4E-0				1	0.1		Triadimefon	43121-43-3	2.1E+03	n	2.8E+04	n					6.3E+02 n		5.0E-01	n	
7.2E-02 C	O 2.5E-0)2 O		V	1			Triallate	2303-17-5	9.7E+00	С	4.6E+01	С					4.7E-01 c		1.0E-03	С	
	1.0E-0 8.0E-0				1	0.1		Triasulfuron Tribenuron-methyl	82097-50-5 101200-48-0	6.3E+02 5.1F+02	n n	8.2E+03 6.6F+03	n n					2.0E+02 n 1.6E+02 n		2.1E-01 6.1E-02	n n	
	5.0E-0			V	1	0.1		Tribromobenzene, 1,2,4-	615-54-3	3.9E+02	n n	5.8E+03	n n					4.5E+01 n		6.4E-02	n n	
	9.0E-0			•	1	0.1		Tribromophenol, 2,4,6-	118-79-6	5.7E+02	n	7.4E+03	n					1.2E+02 n		2.2E-01	n	
	1.0E-0	-			1	0.1		Tribufos	78-48-8	6.3E+00	n	8.2E+01	n					2.8E-01 n		1.4E-03	n	
9.0E-03 F	P 1.0E-0 3.0E-0				1	0.1 0.1		Tributyl Phosphate	126-73-8	6.0E+01 1.9E+01	c* n	2.6E+02 2.5E+02	c*					5.2E+00 c* 6.0E+00 n		2.5E-02	c*	
	3.0E-0				1	0.1		Tributyltin Compounds Tributyltin Oxide	E1790678 56-35-9	1.9E+01 1.9E+01	n n	2.5E+02 2.5E+02	n					5.7E+00 n		2.9E+02	n	
						0.1		Trichloramine	10025-85-1										4.0E+03(G)			
			5.0E+00 P	V	1			Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1	6.7E+03	ns	2.8E+04	ns	5.2E+03	n	2.2E+04	n	1.0E+04 n	1 1	2.6E+01	n	
7.0E-02 I 2.9E-02 F	I 2.0E-0)2 I			1	0.1 0.1		Trichloroacetic Acid Trichloroaniline HCI, 2,4,6-	76-03-9 33663-50-2	7.8E+00 1.9E+01	c	3.3E+01 7.9E+01	C					1.1E+00 c 2.7E+00 c	6.0E+01(G)	2.2E-04 7.4E-03	C C	1.2E-02
7.0E-03	* *)5 X			1	0.1		Trichloroaniline, 2,4,6-	634-93-5	1.9E+01 1.9E+00	n	7.9E+01 2.5E+01	n					2.7E+00 c 4.0E-01 n		7.4E-03 3.6E-03	n	
	8.0E-0)4 X		V	1	0.1		Trichlorobenzene, 1,2,3-	87-61-6	6.3E+01	n	9.3E+02	n					7.0E+00 n		2.1E-02	n	
2.9E-02 F			2.0E-03 P		1		4.0E+02		120-82-1	2.4E+01	C**	1.1E+02	C**	2.1E+00	n	8.8E+00		1.2E+00 c**	7.0E+01	3.4E-03	C**	2.0E-01
5.7F-02 I	2.0E+ I 1.6E-05 I 4.0E-0		5.0E+00 I 2.0F-04 X		1		6.4E+02 2.2F+03	Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	71-55-6 79-00-5	8.1E+03 1.1E+00	ns c**	3.6E+04 5.0E+00	ns c**	5.2E+03 1.8F-01	n c**	2.2E+04 7.7E-01		8.0E+03 n 2.8E-01 c**	2.0E+02 5.0E+00	2.8E+00 8.9E-05	n c**	7.0E-02 1.6F-03
	I 4.1E-06 I 5.0E-0		2.0E-04 X		1		6.9E+02	Trichloroethylene	79-00-5	9.4E-01	C**	6.0E+00	C**	4.8E-01	C**	3.0E+00		4.9E-01 c**	5.0E+00	1.8E-04	C**	1.8E-03
	3.0E-0			V	1			Trichlorofluoromethane	75-69-4	2.3E+04	ns	3.5E+05	nms		-		-	5.2E+03 n	0.02 00	3.3E+00	n	
	1.0E-0				1	0.1		Trichlorophenol, 2,4,5-	95-95-4	6.3E+03	n	8.2E+04	n					1.2E+03 n		4.0E+00	n	
1.1E-02	I 3.1E-06 I 1.0E-0 1.0E-0				1	0.1 0.1		Trichlorophenol, 2,4,6- Trichlorophenoxyacetic Acid, 2,4,5-	88-06-2 93-76-5	4.9E+01 6.3E+02	c**	2.1E+02 8.2E+03	C**	9.1E-01	С	4.0E+00	С	4.1E+00 c** 1.6E+02 n		4.0E-03 6.8E-02	c** n	
	8.0E-0				1	0.1		Trichlorophenoxypropionic acid, -2,4,5	93-70-3	5.1F+02	n	6.6E+03	n					1.1E+02 n	5.0E+01	6.1E-02	n	2.8E-02
	5.0E-0			V	1		1.3E+03	Trichloropropane, 1,1,2-	598-77-6	3.9E+02	n	5.8E+03	ns					8.8E+01 n	0.02 0.	3.5E-02	n	
3.0E+01 I)3 I	3.0E-04 I	V M	1		1.4E+03	Trichloropropane, 1,2,3-	96-18-4	5.1E-03	С	1.1E-01	С	3.1E-01	n	1.3E+00		7.5E-04 c		3.2E-07	С	
	3.0E-0 2.0E-0		3.0E-04 P	V	1	0.1	3.1E+02	Trichloropropene, 1,2,3- Tricresyl Phosphate (TCP)	96-19-5 1330-78-5	7.3E-01 1.3E+03	n n	3.1E+00 1.6E+04	n	3.1E-01	n	1.3E+00	n	6.2E-01 n 1.6E+02 n		3.1E-04 1.5E+01	n n	
	3.0E-0)2 A			1	0.1		Tridiphane	58138-08-2	1.9E+02	n	2.5E+03	n					1.8E+01 n		1.3E-01	n	
			7.0E-03 I	V	1		2.8E+04		121-44-8	1.2E+02	n	4.8E+02	n	7.3E+00	n	3.1E+01	n	1.5E+01 n		4.4E-03	n	
	2.0E+	00 P			1	0.1		Triethylene Glycol	112-27-6	1.3E+05	nm	1.6E+06	nm					4.0E+04 n		8.8E+00	n	
7.7E-03 I	I 7.5E-0	12 1	2.0E+01 P	V	1		4.8E+03	Trifluoroethane, 1,1,1-	420-46-2 1582-09-8	1.5E+04 9.0E+01	ns c**	6.2E+04 4.2E+02	ns c*	2.1E+04	n	8.8E+04	n	4.2E+04 n 2.6E+00 c*		1.3E+02 8.4E-02	n c*	
2.0E-02 F				v	1	0.1		Trimethyl Phosphate	512-56-1	2.7F+01	c*	1.1F+02	c*					3.9F+00 c*		8.6F-04	c*	
	1.0E-0)2	6.0E-02 I	V	1		2.9E+02		526-73-8	3.4E+02	ns	2.0E+03	ns	6.3E+01	n	2.6E+02	n	5.5E+01 n		8.1E-02	n	
	1.0E-0		6.0E-02 I		1		2.2E+02	Trimethylbenzene, 1,2,4-	95-63-6	3.0E+02	ns	1.8E+03	ns	6.3E+01		2.6E+02		5.6E+01 n		8.1E-02	n	
	1.0E-0		6.0E-02 I	V	1		1.8E+02 3.0E+01		108-67-8 25167-70-8	2.7E+02	ns	1.5E+03	ns ns	6.3E+01	n	2.6E+02		6.0E+01 n		8.7E-02	n	
	1.0E-0 3.0E-0			v	1	0.019	3.0 ⊑ +01	Trimethylpentene, 2,4,4- Trinitrobenzene, 1,3,5-	99-35-4	7.8E+02 2.2E+03	ns n	1.2E+04 3.2E+04	ns n					3.8E+01 n 5.9E+02 n		1.3E-01 2.1E+00	n n	
3.0E-02 I					1	0.032	2	Trinitrotoluene, 2,4,6-	118-96-7	2.1E+01	c**	9.6E+01	C**					2.5E+00 c**		1.5E-02	c**	
	2.0E-0				1	0.1		Triphenylphosphine Oxide	791-28-6	1.3E+03	n	1.6E+04	n					3.6E+02 n		1.5E+00	n	
	2.0E-0 1.0E-0				1	0.1 0.1		Tris(1,3-Dichloro-2-propyl) Phosphate Tris(1-chloro-2-propyl)phosphate	13674-87-8 13674-84-5	1.3E+03 6.3E+02	n n	1.6E+04 8.2E+03	n					3.6E+02 n 1.9E+02 n		8.0E+00 6.5F-01	n n	
2.3E+00 (C 6.6E-04 C	, ^		V	1	0.1		Tris(2,3-dibromopropyl)phosphate	126-72-7	2.8E-01	C	1.3E+00	C	4.3E-03	С	1.9E-02	С	6.8E-03 c		1.3E-04	C	
2.0E-02 F	P 7.0E-0				1	0.1		Tris(2-chloroethyl)phosphate	115-96-8	2.7E+01	C*	1.1E+02	c*					3.8E+00 c*		3.8E-03	c*	
3.2E-03 F					1	0.1		Tris(2-ethylhexyl)phosphate	78-42-2	1.7E+02	c*	7.2E+02	С					2.4E+01 c*		1.2E+02	C*	
	8.0E-0		4.0E-05 A		1			Tungsten Uranium	7440-33-7 7440-61-1	6.3E+01 1.6E+01	n n	9.3E+02 2.3E+02	n n	4.2E-02	n	1.8E-01	n	1.6E+01 n 4.0E+00 n	3.0E+01	2.4E+00 1.8E+00	n n	1.4E+01
1.0E+00 (C 2.9E-04 C		oL-00 A	М	1	0.1		Urethane	51-79-6	1.2E-01	C	2.3E+00	C	3.5E-03	C	4.2E-02		2.5E-02 C	3.0L·01	5.6E-06	C	
	8.3E-03 P 9.0E-0		7.0E-06 P		0.026			Vanadium Pentoxide	1314-62-1	4.6E+02	C**	2.0E+03	C**	3.4E-04	c*	1.5E-03	c*	1.5E+02 n				
	5.0E-0		1.0E-04 A	V	0.026			Vanadium and Compounds	7440-62-2	3.9E+02	n	5.8E+03	n	1.0E-01	n	4.4E-01	n	8.6E+01 n		8.6E+01	n	
	1.0E-0 1.2E-0			٧	1	0.1		Vernolate Vinclozolin	1929-77-7 50471-44-8	7.8E+01 7.6E+01	n n	1.2E+03 9.8E+02	n n					1.1E+01 n 2.1E+01 n		8.9E-03 1.6E-02	n n	
	1.0E+		2.0E-01 I	V	1	0.1		Vinyl Acetate	108-05-4	9.1E+02	n	3.8E+03	ns	2.1E+02	n	8.8E+02	n	4.1E+02 n		8.7E-02	n	
	1.5E-05 P		3.0E-03 I		1		2.5E+03	Vinyl Bromide	593-60-2	2.6E-01	c*	1.1E+00	c*	1.9E-01				3.7E-01 c*		1.1E-04	c*	
7.2E-01	I 4.4E-06 I 3.0E-0		1.0E-01 I	V M	1	0.4		Vinyl Chloride	75-01-4	5.9E-02	С	1.7E+00	С	1.7E-01	С	2.8E+00	С	1.9E-02 c	2.0E+00	6.5E-06	С	6.9E-04
	3.0E-0 2.0E-0		1.0E-01 G	V	1	0.1	3.9E+02	Warfarin Xylene, m-	81-81-2 108-38-3	1.9E+01 5.5E+02	n ns	2.5E+02 2.4E+03	n ns	1.0E+02	n	4.4E+02	n	5.6E+00 n 1.9E+02 n		5.9E-03 1.9E-01	n n	
	2.0E-0)1 G	1.0E-01 G	V	1		4.3E+02		95-47-6	6.5E+02	ns	2.8E+03	ns	1.0E+02	n	4.4E+02		1.9E+02 n		1.9E-01	n	
	2.0E-0)1 G	1.0E-01 G	V	1			Xylene, p-	106-42-3	5.6E+02	ns	2.4E+03	ns	1.0E+02	n	4.4E+02		1.9E+02 n		1.9E-01	n	
	2.0E-0		1.0E-01 I	V	1		2.6E+02		1330-20-7	5.8E+02	ns	2.5E+03	ns	1.0E+02	n	4.4E+02	n	1.9E+02 n	1.0E+04	1.9E-01	n	9.9E+00
	3.0E-0				1			Zinc Phosphide Zinc and Compounds	1314-84-7 7440-66-6	2.3E+01 2.3E+04	n n	3.5E+02 3.5F+05	n					6.0E+00 n 6.0E+03 n		3.7E+02	n	
	5.0E-0)2 I			1	0.1		Zineb	12122-67-7	3.2E+03	n	4.1E+04	n					9.9E+02 n		2.9E+00	n	

NSW EPA

Waste Classification
Guidelines
Part 1: Classifying waste

November 2014

Table 1: CT1 & CT2 values for classifying waste by chemical assessment without the TCLP test

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact the EPA. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

		ues of specific ocentration (SCC) n without TCLP	
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Arsenic	100	400	
Benzene	10	40	71-43-2
Benzo(a)pyrene ²	0.8	3.2	50-32-8
Beryllium	20	80	
Cadmium	20	80	
Carbon tetrachloride	10	40	56-23-5
Chlorobenzene	2,000	8,000	108-90-7
Chloroform	120	480	67-66-3
Chlorpyrifos	4	16	2921-88-2
Chromium (VI) ³	100	400	
m-Cresol	4,000	16,000	108-39-4
o-Cresol	4,000	16,000	95-48-7
p-Cresol	4,000	16,000	106-44-5
Cresol (total)	4,000	16,000	1319-77-3
Cyanide (amenable) ⁴	70	280	
Cyanide (total)	320	1,280	
2,4-D	200	800	94-75-7
1,2-Dichlorobenzene	86	344	95-50-1
1,4-Dichlorobenzene	150	600	106-46-7
1,2-Dichloroethane	10	40	107-06-2
1,1-Dichloroethylene	14	56	75-35-4
Dichloromethane	172	688	75-09-2
2,4-Dinitrotoluene	2.6	10.4	121-14-2
Endosulfan ⁵	60	240	See below ⁵
Ethylbenzene	600	2,400	100-41-4
Fluoride	3,000	12,000	
Fluroxypyr	40	160	69377-81-7
Lead	100	400	

	Maximum valu contaminant con for classificatio		
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Mercury	4	16	
Methyl ethyl ketone	4,000	16,000	78-93-3
Moderately harmful pesticides ⁶ (total)	250	1,000	See below ⁶
Molybdenum	100	400	
Nickel	40	160	
Nitrobenzene	40	160	98-95-3
C6–C9 petroleum hydrocarbons ⁷	650	2,600	
C10–C36 petroleum hydrocarbons ⁷	10,000	40,000	
Phenol (non-halogenated)	288	1,152	108-95-2
Picloram	60	240	1918-02-1
Plasticiser compounds ⁸	20	80	See below ⁸
Polychlorinated biphenyls ⁹	<50	<50	1336-36-3
Polycyclic aromatic hydrocarbons (total) ¹⁰	200	800	
Scheduled chemicals ¹¹	<50	<50	
Selenium	20	80	
Silver	100	400	
Styrene (vinyl benzene)	60	240	100-42-5
Tebuconazole	128	512	107534-96-3
1,2,3,4- Tetrachlorobenzene	10	40	634-66-2
1,1,1,2-Tetrachloroethane	200	800	630-20-6
1,1,2,2-Tetrachloroethane	26	104	79-34-5
Tetrachloroethylene	14	56	127-18-4
Toluene	288	1,152	108-88-3
1,1,1-Trichloroethane	600	2,400	71-55-6
1,1,2-Trichloroethane	24	96	79-00-5
Trichloroethylene	10	40	79-01-6
2,4,5-Trichlorophenol	8,000	32,000	95-95-4
2,4,6-Trichlorophenol	40	160	88-06-2
Triclopyr	40	160	55335-06-3

		ues of specific centration (SCC) n without TCLP	
	General solid Restricted solid waste		
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Vinyl chloride	4	16	75-01-4
Xylenes (total)	1,000	4,000	1330-20-7

Notes

- 1. Values are the same for general solid waste (putrescible) and general solid waste (non-putrescible).
- 2. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 3. These limits apply to chromium in the +6 oxidation state only.
- 4. Analysis for cyanide (amenable) is the established method for assessing potentially leachable cyanide. The EPA may consider other methods if it can be demonstrated that these methods yield the same information.
- 5. Endosulfan (CAS Registry Number 115-29-7) means the total of Endosulfan I (CAS Registry Number 959-98-8), Endosulfan II (CAS Registry Number 891-86-1) and Endosulfan sulfate (CAS Registry Number 1031-07-8).
- 6. The following moderately harmful pesticides are to be included in the total values specified:

Moderately harmful pesticides (total)				
Name	CAS Registry Number	Name	CAS Registry Number	
Atrazine	1912-24-9	Imidacloprid	138261-41-3	
Azoxystrobin	131860-33-8	Indoxacarb	173584-44-6	
Bifenthrin	82657-04-3	Malathion (Maldison)	121-75-5	
Brodifacoum	56073-10-0	Metalaxyl	57837-19-1	
Carboxin	5234-68-4	Metalaxyl-M	70630-17-0	
Copper naphthenate	1338-02-9	Methidathion	950-37-8	
Cyfluthrin	68359-37-5	3-Methyl-4-chlorophenol	59-50-7	
Cyhalothrin	68085-85-8	Methyl chlorpyrifos	5598-13-0	
Cypermethrin	52315-07-08	N-Methyl pyrrolidone	872-50-4	
Deltamethrin	52918-63-5	2-octylthiazol-3-one	26530-20-1	
Dichlofluanid	1085-98-9	Oxyfluorfen	42874-03-3	
Dichlorvos	62-73-7	Paraquat dichloride	1910-42-5	
Difenoconazole	119446-68-3	Parathion methyl	298-00-0	
Dimethoate	60-51-5	Permethrin	52645-53-1	
Diquat dibromide	85-00-7	Profenofos	41198-08-7	
Emamectin benzoate	137515-75-4 & 155569-91-8	Prometryn	7287-19-6	
Ethion	563-12-2	Propargite	2312-35-8	
Fenthion	55-38-9	Pentachloronitrobenzene (Quintozene)	82-68-8	
Fenitrothion	122-14-5	Simazine	122-34-9	
Fipronil	120068-37-3	Thiabendazole	148-79-8	

Moderately harmful pesticides (total)					
Name CAS Registry Name CAS Registry Number Name Number					
Fluazifop-P-butyl	79241-46-6	Thiamethoxam	153719-23-4		
Fludioxonil	131341-86-1	Thiodicarb	59669-26-0		
Glyphosate	1071-83-6	Thiram	137-26-8		

- 7. Approximate range of petroleum hydrocarbon fractions: petrol C6–C9, kerosene C10–C18, diesel C12–C18, and lubricating oils above C18. Laboratory results are reported as four different fractions: C6–C9, C10–C14, C15–C28 and C29–C36. The results of total petroleum hydrocarbons (TPH) (C10–C36) analyses are reported as a sum of the relevant three fractions. Please note that hydrocarbons are defined as molecules that only contain carbon and hydrogen atoms. Prior to TPH (C10–C36) analysis, clean-up may be necessary to remove non-petroleum hydrocarbon compounds. Where the presence of other materials that will interfere with the analysis may be present, such as oils and fats from food sources, you are advised to treat the extract that has been solvent exchanged to hexane with silica gel as described in *USEPA Method 1664A* (USEPA 2000).
- 8. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.
- 9. Polychlorinated biphenyls must be managed in accordance with the EPA's polychlorinated biphenyl (PCB) chemical control order 1997, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/pcbcco1997.pdf.
- 10. The following polycyclic aromatic hydrocarbons (PAHs) are assessed as the total concentration of 16 USEPA Priority Pollutant PAHs, as follows:

Polycyclic aromatic hydrocarbons (total)					
PAH name	CAS Registry Number	PAH name	CAS Registry Number		
Acenaphthene	83-32-9	Chrysene	218-01-9		
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3		
Anthracene	120-12-7	Fluoranthene	206-44-0		
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7		
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5		
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3		
Benzo(ghi)perylene	191-24-2	Phenanthrene	85-01-8		
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0		

11. Scheduled chemicals must be managed in accordance with the EPA's scheduled chemical wastes chemical control order 2004, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/scwcco2004.pdf.

The following scheduled chemicals are to be included in the total values specified:

Scheduled chemicals (total)					
Name CAS Registry Name CAS Regis Number Name CAS Regis					
Aldrin	309-00-2	Heptachlor	76-44-8		
Alpha-BHC	319-84-6	Heptachlor epoxide	1024-57-3		
Beta-BHC	319-85-7	Hexachlorobenzene	118-74-1		
Gamma-BHC (Lindane)	58-89-9	Hexachlorophene	70-30-4		
Delta-BHC	319-86-8	Isodrin	465-73-6		

Waste Classification Guidelines – Part 1: Classification of waste

Scheduled chemicals (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Chlordane	57-74-9	Pentachlorobenzene	608-93-5		
DDD	72-54-8	Pentachloronitrobenzene	82-68-8		
DDE	72-55-9	Pentachlorophenol	87-86-5		
DDT	50-29-3	1,2,4,5-Tetrachlorobenzene	95-94-3		
Dieldrin	60-57-1	2,3,4,6-Tetrachlorophenol	58-90-2		
Endrin	72-20-8	1,2,4-Trichlorobenzene	120-82-1		
Endrin aldehyde	7421-93-4	2,4,5-Trichlorophenoxyacetic acid, salts and esters	93-76-5		

Table 2: TCLP and SCC values for classifying waste by chemical assessment

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact the EPA. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

	Maximum va contam				
	General so	General solid waste ¹		Restricted solid waste	
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
Arsenic	5.0 ²	500	20	2,000	
Benzene	0.5 ²	18	2	72	71-43-2
Benzo(a)pyrene ³	0.044	10	0.16	23	50-32-8
Beryllium	1.0 ⁵	100	4	400	
Cadmium	1.0 ²	100	4	400	
Carbon tetrachloride	0.5 ²	18	2	72	56-23-5
Chlorobenzene	100 ²	3,600	400	14,400	108-90-7
Chloroform	6 ²	216	24	864	67-66-3
Chlorpyrifos	0.2	7.5	0.8	30	2921-88-2
Chromium (VI) ⁶	5 ²	1,900	20	7,600	
m-Cresol	200 ²	7,200	800	28,800	108-39-4
o-Cresol	200 ²	7,200	800	28,800	95-48-7
p-Cresol	200 ²	7,200	800	28,800	106-44-5
Cresol (total)	200 ²	7,200	800	28,800	1319-77-3
Cyanide (amenable) ^{7, 8}	3.57	300	14	1,200	
Cyanide (total) ⁷	16 ⁷	5,900	64	23,600	
2,4-D	10 ²	360	40	1,440	94-75-7
1,2- Dichlorobenzene	4.3 ²	155	17.2	620	95-50-1
1,4- Dichlorobenzene	7.5 ²	270	30	1,080	106-46-7
1,2- Dichloroethane	0.5 ²	18	2	72	107-06-2
1,1- Dichloroethylene	0.72	25	2.8	100	75-35-4
Dichloromethane	8.6 ²	310	34.4	1,240	75-09-2
2,4-Dinitrotoluene	0.13 ²	4.68	0.52	18.7	121-14-2
Endosulfan ⁹	3	108	12	432	See below ⁹

		um values for leachable concentration and specific ontaminant concentration when used together				
	General solid waste ¹		Restricted	solid waste		
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS	
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number	
Ethylbenzene	30 ¹⁰	1,080	120	4,320	100-41-4	
Fluoride	150 ¹⁰	10,000	600	40,000		
Fluroxypyr	2	75	8	300	69377-81- 7	
Lead	5 ²	1,500	20	6,000		
Mercury	0.2 ²	50	0.8	200		
Methyl ethyl ketone	200 ²	7,200	800	28,800	78-93-3	
Moderately harmful pesticides ¹¹ (total)	N/A ¹²	250	N/A ¹²	1,000	See below ¹¹	
Molybdenum	5 ¹⁰	1,000	20	4,000		
Nickel	2 ¹⁰	1,050	8	4,200		
Nitrobenzene	2 ²	72	8	288	98-95-3	
C6–C9 petroleum hydrocarbons ¹³	N/A ¹²	650	N/A ¹²	2,600		
C10–C36 petroleum hydrocarbons ¹³	N/A ¹²	10,000	N/A ¹²	40,000		
Phenol (non- halogenated)	14.4 ¹⁴	518	57.6	2,073	108-95-2	
Picloram	3	110	12	440	1918-02-1	
Plasticiser compounds ¹⁵	1	600	4	2,400	See below ¹⁵	
Polychlorinated biphenyls ¹²	N/A ¹²	< 50	N/A ¹²	< 50	1336-36-3	
Polycyclic aromatic hydrocarbons (total) ¹⁶	N/A ¹²	200	N/A ¹²	800		
Scheduled chemicals ¹⁷	N/A ¹²	< 50	N/A ¹²	< 50	See below ¹⁷	
Selenium	1 ²	50	4	200		
Silver	5.0 ²	180	20	720		
Styrene (vinyl benzene)	3 ¹⁰	108	12	432	100-42-5	
Tebuconazole	6.4	230	25.6	920	107534- 96-3	
1,2,3,4- Tetrachlorobenzene	0.5	18	2	72	634-66-2	

	Maximum values for leachable concentration and specific contaminant concentration when used together				
	General so	olid waste ¹	Restricted		
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
1,1,1,2- Tetrachloroethane	10 ²	360	40	1,440	630-20-6
1,1,2,2- Tetrachloroethane	1.3 ²	46.8	5.2	187.2	79-34-5
Tetrachloroethylene	0.7 ²	25.2	2.8	100.8	127-18-4
Toluene	14.4 ¹⁴	518	57.6	2,073	108-88-3
1,1,1- Trichloroethane	30 ²	1,080	120	4,320	71-55-6
1,1,2- Trichloroethane	1.2 ²	43.2	4.8	172.8	79-00-5
Trichloroethylene	0.5 ²	18	2	72	79-01-6
2,4,5- Trichlorophenol	400 ²	14,400	1,600	57,600	95-95-4
2,4,6- Trichlorophenol	2 ²	72	8	288	88-06-2
Triclopyr	2	75	8	300	55335-06- 3
Vinyl chloride	0.2 ²	7.2	0.8	28.8	75-01-4
Xylenes (total)	50 ¹⁸	1,800	200	7,200	1330-20-7

Notes

- 1. Values are the same for general solid waste (putrescible) and general solid waste (non- putrescible).
- 2. See Hazardous Waste Management System: Identification and Listing of Hazardous Waste Toxicity Characteristics Revisions, Final Rule (USEPA 2012b) for TCLP levels.
- 3. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 4. Calculated from Hazardous Waste: Identification and Listing (USEPA 2012a).
- 5. Calculated from 'Beryllium' in *The Health Risk Assessment and Management of Contaminated Sites* (DiMarco & Buckett 1996).
- 6. These limits apply to chromium in the +6 oxidation state only.
- 7. Taken from the Land Disposal Restrictions for Newly Identified and Listed Hazardous Wastes and Hazardous Soil: Proposed Rule (USEPA 1993).
- 8. Analysis for cyanide (amenable) is the established method used to assess the potentially leachable cyanide. The EPA may consider other methods if it can be demonstrated that these methods yield the same information.
- 9. Endosulfan (CAS Registry Number 115-29-7) means the total of endosulfan I (CAS Registry Number 959-98-8), endosulfan II (CAS Registry Number 891-86-1) and endosulfan sulfate (CAS Registry Number 1031-07-8).
- 10. Calculated from Australian Drinking Water Guidelines (NHMRC 2011).
- 11. The following moderately harmful pesticides are to be included in the total values specified:

Moderately harmful pesticides (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Atrazine	1912-24-9	Imidacloprid	138261-41-3		
Azoxystrobin	131860-33-8	Indoxacarb	173584-44-6		
Bifenthrin	82657-04-3	Malathion (Maldison)	121-75-5		
Brodifacoum	56073-10-0	Metalaxyl	57837-19-1		
Carboxin	5234-68-4	Metalaxyl-M	70630-17-0		
Copper naphthenate	1338-02-9	Methidathion	950-37-8		
Cyfluthrin	68359-37-5	3-Methyl-4-chlorophenol	59-50-7		
Cyhalothrin	68085-85-8	Methyl chlorpyrifos	5598-13-0		
Cypermethrin	52315-07-08	N-Methyl pyrrolidone	872-50-4		
Deltamethrin	52918-63-5	2-octylthiazol-3-one	26530-20-1		
Dichlofluanid	1085-98-9	Oxyfluorfen	42874-03-3		
Dichlorvos	62-73-7	Paraquat dichloride	1910-42-5		
Difenoconazole	119446-68-3	Parathion methyl	298-00-0		
Dimethoate	60-51-5	Permethrin	52645-53-1		
Diquat dibromide	85-00-7	Profenofos	41198-08-7		
Emamectin benzoate	137515-75-4 & 155569-91-8	Prometryn	7287-19-6		
Ethion	563-12-2	Propargite	2312-35-8		
Fenthion	55-38-9	Pentachloronitrobenzene (Quintozene)	82-68-8		
Fenitrothion	122-14-5	Simazine	122-34-9		
Fipronil	120068-37-3	Thiabendazole	148-79-8		
Fluazifop-P-butyl	79241-46-6	Thiamethoxam	153719-23-4		
Fludioxonil	131341-86-1	Thiodicarb	59669-26-0		
Glyphosate	1071-83-6	Thiram	137-26-8		

12. No TCLP analysis is required. Moderately harmful pesticides, petroleum hydrocarbons, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and scheduled chemicals are assessed using SCC1 and SCC2.

Polychlorinated biphenyls must be managed in accordance with the EPA's polychlorinated biphenyl (PCB) chemical control order 1997, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/pcbcco1997.pdf.

- 13. Approximate range of petroleum hydrocarbon fractions: petrol C6–C9, kerosene C10–C18, diesel C12–C18, and lubricating oils above C18. Laboratory results are reported as four different fractions: C6–C9, C10–C14, C15–C28 and C29–C36. The results of total petroleum hydrocarbons (C10–C36) analyses are reported as a sum of the relevant three fractions. Please note that hydrocarbons are defined as molecules that only contain carbon and hydrogen atoms. Prior to TPH (C10–C36) analysis, clean-up may be necessary to remove non-petroleum hydrocarbon compounds. Where the presence of other materials that will interfere with the analysis may be present, such as oils and fats from food sources, you are advised to treat the extract that has been solvent exchanged to hexane with silica gel as described in USEPA *Method 1664A* (USEPA 2000).
- 14. Proposed level for phenol and toluene in *Hazardous Waste Management System: Identification and Listing of Hazardous Waste Toxicity Characteristics Revisions, Final Rule* (USEPA 2012b).

- 15. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.
- 16. The following polycyclic aromatic hydrocarbons are assessed as the total concentration of 16 USEPA Priority Pollutant PAHs, as follows:

Polycyclic aromatic hydrocarbons (total)					
PAH name	CAS Registry Number				
Acenaphthene	83-32-9	Chrysene	218-01-9		
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3		
Anthracene	120-12-7	Fluoranthene	206-44-0		
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7		
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5		
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3		
Benzo(ghi)perylene	191-24-2	Phenanthrene	85-01-8		
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0		

17. Scheduled chemicals must be managed in accordance with the EPA's scheduled chemical wastes chemical control order 2004, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/scwcco2004.pdf.

The following scheduled chemicals are to be included in the total values specified:

Scheduled chemicals (total)								
Name	Name	CAS Registry Number						
Aldrin	309-00-2	Heptachlor	76-44-8					
Alpha-BHC	319-84-6	Heptachlor epoxide	1024-57-3					
Beta-BHC	319-85-7	Hexachlorobenzene	118-74-1					
Gamma-BHC (Lindane)	58-89-9	Hexachlorophene	70-30-4					
Delta-BHC	319-86-8	Isodrin	465-73-6					
Chlordane	57-74-9 Pentachlorobenzene		608-93-5					
DDD	72-54-8	Pentachloronitrobenzene	82-68-8					
DDE	72-55-9	Pentachlorophenol	87-86-5					
DDT	50-29-3	1,2,4,5-Tetrachlorobenzene	95-94-3					
Dieldrin	60-57-1	2,3,4,6-Tetrachlorophenol	58-90-2					
Endrin	72-20-8	1,2,4-Trichlorobenzene	120-82-1					
Endrin aldehyde	7421-93-4	2,4,5-Trichlorophenoxyacetic acid, salts and esters	93-76-5					

18. Calculated from Guidelines for Drinking Water Quality (WHO 2011).

Table 3: Summary of criteria for chemical assessment to determine waste classification

Waste classification	Criteria ¹ for classification by chemical assessment (any of the alternative options given)	Comments
General solid	1. SCC test values ≤ CT1	TCLP test not required
waste	2. TCLP test values ≤ TCLP1 and SCC test values ≤ SCC1	
	3. TCLP test values ≤ TCLP1 and SCC test values > SCC1 ²	Classify as restricted solid or hazardous (as applicable)
		If immobilisation approval applies, classify in accordance with that approval
Restricted solid	1. SCC test values ≤ CT2	TCLP test not required
waste	2. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values ≤ SCC2	
	3.TCLP test values ≤ TCLP2 and SCC1 < SCC test values ≤ SCC2	
	4. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values > SCC2 ²	Classify as hazardous. If immobilisation approval applies, classify in accordance with that approval
Hazardous	1. TCLP test values > TCLP 2	
waste	2. TCLP test values ≤ TCLP2 and SCC test values > SCC2	Classify as hazardous if no immobilization approval applies

Notes

- 1. These criteria apply to each toxic and ecotoxic contaminant present in the waste (see Tables 1 and 2).
- 2. In certain cases the EPA will consider specific conditions, such as segregation of the waste from all other types of waste in a monofill or monocell in order to achieve a greater margin of safety against a possible failure of the immobilisation in the future. Information about the construction and operation of a monofill/monocell is available in the *Draft Environmental Guidelines for Industrial Waste Landfilling* (EPA 1998).

APPENDIX K

GROUNDWATER LOGS

BOREHOLE NUMBER BH17

DATUM _

PAGE 1 OF 2

Aargus Pty Ltd
6 Carter St
Lidcombe, NSW
Telephone: 1300137138

Pargus

Aargus

BOREHOLE / TEST PIT ES8338 GREENACRE LOGS.GPJ GINT STD AUSTRALIA.GDT 9/9/21

DATE STARTED <u>8/31/21</u> **COMPLETED** <u>8/31/21</u>

R.L. SURFACE __

DR	ILLI	NG C	ONTR	ACTO			SLOPE 90° BEARING NA				
							HOLE LOCATION				
ı			50mi				LOGGED BY SBS CHECKED BY MK				
NC	TES	Sul	osurfa	ce lev	els are	approximate					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations	
ADT				\bowtie		FILL. Sandy Clay, low plasticity, dark brown, with grass rootlets.				FILL/TOPSOIL	
JA .	Not encountered		1.5 		СН	FILL. Sandy Clay, low plasticity, pale to dark brown, with medium gravel and asphelices. Sitty CLAY, high plasticity, orange to grey, pale brown. SHALE, grey, highly weathered.		м		RESIDUAL SOIL BEDROCK	

BOREHOLE NUMBER BH17

PAGE 2 OF 2

Aargus Pty Ltd
6 Carter St
Lidcombe, NSW
Telephone: 130013

BOREHOLE / TEST PIT ES8338 GREENACRE LOGS.GPJ GINT STD AUSTRALIA.GDT 9/9/21

Telephone: 1300137138
Fax: 1300136038
Capital Pty Ltd

				ıaı Fıy									
PR	OJE	CT NI	JMBE	R _E	S8338		PROJECT LOCATION	PROJECT LOCATION 167 Hume Highway, Greenacre NSW					
								R.L. SURFACE					
										BEARING NA			
EQ	UIPN	/IENT	_Tra			rig							
НО	LE S	SIZE	50mi	m			LOGGED BY SBS			CHE	CKED BY MK		
NO	TES	Sul	bsurfa	ce lev	els are	approximate							
Method	Water	RL	Depth	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations		
Me	×	(m)	(m)	Gra	Syl								
ADT			_			SHALE, grey, highly weathered. (continued)			М				
A A			5.5 			TC-bit refusal. EOH at 5.2m depth. Borehole BH17 terminated at 5.2m			IVI				
			8.5 										

BOREHOLE NUMBER GW1/BH1 Aargus Pty Ltd 6 Carter St PAGE 1 OF 2

Lidcombe, NSW Telephone: 1300137138

PROJECT NUMBER ES8338

Fax: 1300136038 **CLIENT** Iris Capital Pty Ltd

PROJECT NAME _ Aargus Pty Ltd

PROJECT LOCATION 167 Hume Highway, Greenacre NSW

DATE STARTED <u>8/31/21</u> **COMPLETED** <u>8/31/21</u> _____ DATUM _ R.L. SURFACE ___ SLOPE 90° DRILLING CONTRACTOR BG Drilling BEARING NA EQUIPMENT Track-mounted rig HOLE LOCATION See site plan **HOLE SIZE** 50mm LOGGED BY SBS CHECKED BY MK NOTES Subsurface levels are approximate Con. / Den. Graphic Log Moisture Samples Additional Observations Material Description Tests Remarks Well Depth (m) CONCRETE. 300mm. PAVEMENT FILL. Sandy Clay, low to medium plasticity, dark brown, with medium gravel М 0.5 Silty CLAY, medium plasticity, pale brown to grey. RESIDUAL SOIL 1.0 Silty CLAY, high plasticity, orange to grey. М BOREHOLE / TEST PIT ES8338 GREENACRE LOGS.GPJ GINT STD AUSTRALIA.GDT 9/9/2/ BEDROCK SHALE, grey, highly weathered. 4<u>.5</u> М

BOREHOLE NUMBER GW1/BH1 PAGE 2 OF 2

Aargus Pty Ltd 6 Carter St Lidcombe, NSW Telephone: 1300137138 Fax: 1300136038

	CLIENT Iris Capital Pty Ltd PROJECT NUMBER ES8338						PROJECT NAME _ Aargus Pty Ltd PROJECT LOCATION _ 167 Hume Highway, Greenacre NSW				
DA DR	TE S	STARTED	_8/3 RAC1	1/21 FOR _BC	G Drilling	COMPLETED <u>8/31/21</u>	SLOPE _90°		_	BEA	
НО	LE S	MENT <u>Tr</u> SIZE <u>50r</u> S Subsurf	nm					HOLE LOCATION See site plan LOGGED BY SBS			
Method	Water			(w) (graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations
ADT	2-Sept-2021			5.5 6.0 7.0 7.5 8.0 9.0 9.5		SHALE, grey, highly weathered. (contil			M		

BOREHOLE NUMBER GW2/BH4 Aargus Pty Ltd 6 Carter St

PAGE 1 OF 2

Lidcombe, NSW

Telephone: 1300137138 Fax: 1300136038 CLIENT Iris Capital Pty Ltd PROJECT NAME _ Aargus Pty Ltd PROJECT NUMBER ES8338 PROJECT LOCATION 167 Hume Highway, Greenacre NSW

						COMPLETED 8/31/21 R.L. SURFACE SLOPE 90°					
EQUIF	PMENT	Track	-moun	ted rig		HOLE LOCATIO	ON				
HOLE	SIZE	<u>50mm</u>				LOGGED BY _S	SBS	c	HE	CKED BY MK	
NOTE	S _Su	ıbsurface	elevels	are a	pproxir	nate					
Method Water	We Deta	II RL	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations	
ADT	·/	· (,	()			ASPHALT. 200mm.				PAVEMENT	
AI			0.5			FILL. Sandy Clay, low to medium plasticity, dark brown, with med and asphalt pieces.	dium gravel	M	_	FILL	
			1. <u>0</u> 1. <u>5</u>		СН	Silty CLAY, high plasticity, orange to grey, pale brown.		М	_	RESIDUAL SOIL	
			2.0 			SHALE, grey, highly weathered.			-	BEDROCK	
			3.5					М			

BOREHOLE NUMBER GW2/BH4

PAGE 2 OF 2

Aargus Pty Ltd 6 Carter St Lidcombe, NSW Telephone: 1300

BOREHOLE / TEST PIT ES8338 GREENACRE LOGS.GPJ GINT STD AUSTRALIA.GDT 9/9/21

Telephone: 1300137138 Fax: 1300136038

PROJECT NAME _ Aargus Pty Ltd CLIENT Iris Capital Pty Ltd PROJECT NUMBER ES8338 PROJECT LOCATION 167 Hume Highway, Greenacre NSW **DATE STARTED** <u>8/31/21</u> **COMPLETED** <u>8/31/21</u> R.L. SURFACE _____ DATUM _ DRILLING CONTRACTOR BG Drilling SLOPE 90° BEARING NA EQUIPMENT Track-mounted rig HOLE LOCATION CHECKED BY MK HOLE SIZE 50mm LOGGED BY SBS NOTES Subsurface levels are approximate Classification Symbol Con. / Den. Graphic Log Moisture Samples Material Description Additional Observations Tests Method Remarks Well Depth (m) SHALE, grey, highly weathered. (continued) 5.5 6.0 6.5 2-Sept-2021 7.0 М 7.5 8.0 8.5 9.0 SHALE, grey. М TC-bit refusal. EOH at 9.1m depth. Borehole GW2/BH4 terminated at 9.1m 9.5

Aargus Pty Ltd 6 Carter St Lidcombe, NSW Telephone: 1300137138

BOREHOLE NUMBER GW4/BH21

PAGE 1 OF 2

CLI		us F F <u>Iris Ca</u>	ax: 1	30013 Pty Lt	36038 d			PROJECT NAME _ Aargus Pty Ltd PROJECT LOCATION _ 167 Hume Highway, Greenacre NSW						
DATE STARTED 8/31/21 COMPLETED 8/31/21 DRILLING CONTRACTOR BG Drilling EQUIPMENT Track-mounted rig HOLE SIZE 50mm NOTES Subsurface levels are approximate								R.L. SURFACE SLOPE 90° HOLE LOCATION		_	DATUMBEARING _NA			
Method	Water	Well Details		Depth (m)	Graphic Log	Classification Symbol	nate Material De	scription	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations		
ADT	ı					СН	FILL. Sandy Clay, low to medium plastic trace of glass and plastic pieces. Silty CLAY, high plasticity, orange to gre			М		RESIDUAL SOIL		
BONETIOLE / TEST TIL ESSONG STEENAGNE EGGGGGFG GINT STO NOTINALIA.GOT 3/3/2.1				3.0 			SHALE, grey, highly weathered.			М		BEDROCK		

BOREHOLE NUMBER GW4/BH21 Aargus Pty Ltd 6 Carter St Lidcombe, NSW

Telephone: 1300137138 Fax: 1300136038 PROJECT NAME _ Aargus Pty Ltd CLIENT Iris Capital Pty Ltd PROJECT NUMBER ES8338 PROJECT LOCATION _167 Hume Highway, Greenacre NSW

DATE STARTED 8/31/21 DATUM **COMPLETED** 8/31/21 R.L. SURFACE

PAGE 2 OF 2

					R.L. SURFACE						
					SLOPE 90°						
					HOLE LOCATION						
HOLE SI	ZE <u>50mm</u>				LOGGED BY SBS CHECKED BY MK						
NOTES	Subsurface	e levels are	approxin	nate							
	Well RL Details (m)	(w) https://deco.com	Classification Symbol	Material D	escription	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations		
N ADT	Details (III)	5.5 6.0 7.0 8.0 7.5 8.0 9.0 9.5		SHALE, grey, highly weathered. (contile of the contile of the cont			M				

BOREHOLE NUMBER GW5/BH8

PAGE 1 OF 2

Aargus Pty Ltd 6 Carter St Lidcombe, NSW Telephone: 1300137138

Fax: 1300136038 CLIENT Iris Capital Pty Ltd	PROJECT NAME Aargus Pty Ltd					
PROJECT NUMBER ES8338	PROJECT LOCATION 1	67 Hume Hi	ighwa	ay, C	Greenacre NSW	
DATE STARTED 8/31/21 COMPLETED 8/31/21	R.L. SURFACE DATUM					
DRILLING CONTRACTOR BG Drilling	SLOPE 90° BEARING NA					
EQUIPMENT Track-mounted rig	HOLE LOCATION					
HOLE SIZE 50mm	LOGGED BY SBS CHECKED BY MK					
NOTES Subsurface levels are approximate						
Material I Material I	Description	Samples Tests Remarks	Moisture	on. / Den.	Additional Observations	

HOLE SIZE 50mm L			LOGGED BY SBS								
NOTES Subsurface levels are approximate					s are a	pproxir	mate	T	1		
Method	Water	Well Details		Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture	Con. / Den.	Additional Observations
ADT				-			FILL. Sandy Clay, low to medium plasticity, dark brown, with fine gravel and glass pieces.		М		FILL
				0 <u>.5</u>		CI	Silty CLAY, medium plasticity, pale brown to grey.		М	_	RESIDUAL SOIL
				1. <u>0</u> 1. <u>0</u>		СН	Silty CLAY, high plasticity, orange to grey.		M		
				3. <u>0</u>			SHALE, grey, highly weathered.		M		BEDROCK

BOREHOLE NUMBER GW5/BH8

BOREHOLE / TEST PIT ES8338 GREENACRE LOGS.GPJ GINT STD AUSTRALIA.GDT 9/9/21

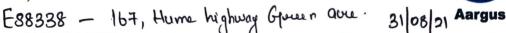
Aargus Pty Ltd 6 Carter St Lidcombe, NSW Telephone: 1300137138

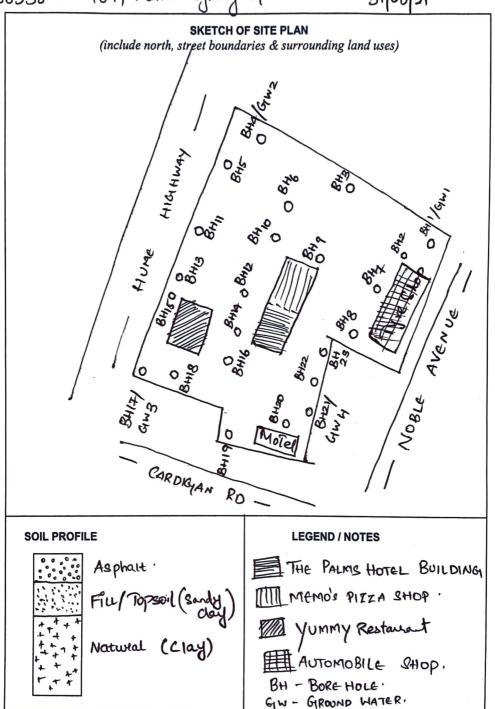
PAGE 2 OF 2

Aargus Fax: 1300136038 CLIENT Iris Capital Pty Ltd PROJECT NAME Aargus Pty Ltd													
									ighw	ay, Greenacre NS	W		
DA ⁻	TE S	STARTED	8/31/2	21		COMPLETED <u>8/31/21</u>	R.L. SURFACE			DATUM			
							SLOPE 90°						
		SIZE _50n									1K		
NOTES Subsurface levels are approximate													
Method	Water		RL Dep	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Moisture	O Additiona	Observations		
ADT						SHALE, grey, highly weathered. (continu	ed)						
٩				+									
				+									
			5.	5									
				+									
				+									
			6.	0									
				+	1								
		:: 昌::]											
			6.	5									
									.,				
									M				
			7.	_									
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_									
				_									
			7.	5									
				=									
				_									
	▼		8.	0									
	-2021			-									
	2-Sept-2021			\vdash									
	5			_		<u></u>		_					
			8.	<u>.</u>		TC-bit refusal. EOH at 8.4m depth.							
]		Borehole GW5/BH8 terminated at 8.4m							
				4									
			9.										
]									
				4									
				+									
			9.	5									
				4									
				+									
]									
			10.	0	1								

APPENDIX L

FIELD RECORD FORMS / CALIBRATION CERTIFICATES




Site Inspection Daily Worksheet Record

PROJECT NAME: DSI	PROJECT NO: ESSSE								
CLIENT: I'vis Capital	DATE: 91/08/21								
SITE ADDRESS: 167, Hume highway, Guunavie.									
SITE CONTACT: PHONE:									
AARGUS REPRESENTATIVE: SAAD									
TITLE: Environmental Engin	PHONE:								
FIELD NOTES:									
Start Time 7:00 AM	Finish Time 6:00 PM								
Weather SUNNY .	Rainfall (mm) No								
Wind Direction 14km/ by. North.	Wind Speed AKm/ box								
Humidity 51 %									
Odours Present Nono -	Staining Present None								
Environmental and Safety Concerns									
Actions									
Machinery onsite Mechanical Augus.	Equipment onsite Hand slugues.								
Site Safety Induction	Stormwater Control Qund bags								
Dust Suppression Water hose / Sand bags	Traffic Control Not required ,								

Description of Site Activities

31/08/21

ES8338

167 Huma highway, Glownause

APPRIES

PID Measurements

PID Monitor Description.....

Model 580 E2 PiD meter.

	. []		vila	T	
Location	PD (PP)	Location	PID (ppm)	Location, M. C. M.	PP (ppin)
BH 1 0.3-0	4 10.6	BH 1 0.5-0			
Location	PID (ppin)	Location 2	PID (ppm)	Location 7.33	PID (dom)
BH 2030	4 40.5	BH2 0.50.			, , , , , , , , , , , , , , , , , , , ,
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
BH 3 0.2-	035.6	BH3 0.6-0.7	1.4		
Location	PID (ppm)	Location	PID (ppm)	Location	PID level
BH 40.24	33.4	BH4 0.9-1.0	1.1		
Location	PID (ppm)	Location	PID (ppm)	Location 1	PID (ppm)
BH 502-0		BHS 0.4-0.5	1.2		
Location	PID (ppm) v	Location	PID (ppm)	Location	PD (694) F
BH 60.2	9 1	BH6 0.5-0.6	1.4		
Location	PID (ppm) x	Location	PID (ppin)	Location	PD (699) %
BH 7 03	4 20.0	BH7 08-09	27.6		
Location	PD (ppm)	Location:	PID (ppin)	Location	PD (ppm)
BH 8 0.3	2.7	BH8-0.4-0.2	1-8	A. S. C. C. C. S.	
Location	Network William	Location	PD (ppm)	Location 3.	20000000000000000000000000000000000000
BH 902	2.9	BH9 0.5-0.6	1.6	Valla o o o o o o o o o o o o o o o o o o	A
Location	PD (mm)	Location	PID (ppm)	Location	語的過答
BH 10%	1	BH10 0-4-0.5	1.9	. Su Carlo a constituit de la constituit de	
Location	PID (ppm)	Location	PID (ppm)	Location	PD (ppm)
BH 1100	4,1	BH11 0.4-0.5	2.2		
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
BH 1505	2.4	BH12 0.4-0.5	4.4		
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
BH 130	1.3	BH13 0.5-0.6	1.9		
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
BH 1403	1.9	BH14 0.9-1.0	2.3		
Location	PID (ppm)	Location	PIQ (ppm)	Location	PID (ppm)
BH IS	1.5	BHIS 0.5-0.6	1.8		
0.1-0.2					

0-1-0-2

PID Measurements

PID Monitor Description. Modu 580 E2 PID Meter!

П	PERSONAL PROPERTY	"L'SPID (dicita)	THE SECTION OF THE SE	PID Valuati VAL	Location description	TOTO VERGE SEA
_	ocation	PO (PP)	3000 P. C.	1000	HOLD BURN	新新新新
	HI6 0.2-0.3	3.2	BHIG 0.5-0.6	2.6		
Ŀ	ocation	PID (ppth)	Location	PID (ppm)	Location	PID (prim)
B	17 001-002	2.8	BHIT 0.9-100	2.2		
Ļ	ocation	PID (ppm)	Location	PID (ppm)	Location	PID (GOA)
B	His 0-1-0.8	4.0	BHIS 0.8-0.9	3.3		
Ļ	ocation	PID (ppm)	Location	PIO (ppm)	Location	PID level
B	HI9 011-002	2.6	BH19 0.6-00+	22		
Lo	cation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
B	120 0.2-0.3	3 1.7	BH20 0-6-0-4	2:1		
Ľç	cation	PID (ppm)	Location 2.3	.PID (ppm) V.i.	Location	即伸伸
B	H21 000	1.9	BH21 0.3-0.4	1.6		
Lc	ocatión	PID (ppm) r	Location	PID (ppin)	Location *	PD (69m) 87
B	H22 010 8	1.6	BH220.6-0.+	2.4		
Ļċ	cation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
B	123 000	3.7	BH23 006-07	3.0		
Lo	cation	PD (ping) II	Location 1	PD (ppm)	Location 5, 4, 4	PD (mm)
Lö	dation	PID (ppm)	Location 3	PID (ppm)	Location /	200000%
Ló	ation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
	** ** * * * * * * * * * * * * * * * *	, ,, ,, ,, ,, ,, ,,				Sec. 1285 25 127 25 1
Loc	ation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
· ·		2130 21 1 32 M	14 C 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-14-11-11-11-11-11-11-11-11-11-11-11-11-	S 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A STATE OF THE STA
Lbd	ation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A September Line of the	S. A. S. L. S.	183 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100	ation	PID (ppm)	Location	PID (ppm)	Location	(man) (III
LUC	audii	المسلم مديد	Location	. ريسوس حدي	Logation	PID (ppm)
		nm (-til)	1 1/2 1/2 11 12 12 12 12 12 12 12 12 12 12 12 12	THE Year St. S	1 0	1000 C 1000
Loc	ation	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)

Aargus Pty Ltd

PID Certification Report

ES8338. 167 Hume highway, Gueraus, NSW.

This PID has been performance checked/calibrated as follows:

0	Calibrate 0.0ppm Calibrate 99.3 ppm isobutyler	Reading <u>© 0</u> ppm ne Reading <u>994</u> ppm	
	Charged		and the same of th
ď	Filter check	The state of the s	
4	Lamp check		
Date:	31/08/ 2021	_	
Checked 1	by: SAADBIN BULEMAN		
Signature:	le f		
Please che	ck that the following items are contain.	ined within the PID Equipr	nent Register
1	PID carry. case		
	Model 580 EZ PID meter		
	Charger		
<u>a</u>	Adapter for charger		
á	Calibration tube		
1	Sample Probe		
Q	Water Filter Trap		
	Computer cable connector		, Y

Serial Number: Local gelanding.

Floppy disk software

Record Checked by:

Date:

GROUNDWATER MONITORING RECORD FORM

PROJECT II	IFODA A ATION	or the beautiful of the consequence of their the	MARKET STREET,					
	NEOKIMATION	DATE OF THE PARTY	STATE AND ADDRESS.					
Client:	IR	IS CAPI	TAL		onitoring Well ID:		BIGW	1
Site Address:	167 Hu	me Huy,	breen ac	re Log	ged By:		\$400 2 /09 /2	
Project:	E	S 833	20 ~ B	Dat	te:		2 /09 /2	<u></u>
MONITOR	NG WELL DETA		A STATE OF THE STA	A PROPERTY.				
Depth (m) as	constructed:		9.0 m	De	pth (m) as measure	d:	8.9	7m
Finish:				Co-	ordinates:			
Condition:				Sur	veyed Levels:			
	LOGY AND EQU	AND DESCRIPTION OF PERSONS ASSESSMENT	SHE SHELL				1 1 1 1 1	
420000000000000000000000000000000000000	rement Device:	Tay	e Meas	me Ref	ference Point:		GC	
Water Qualit	y Meter:				ference Point to Gr	ound	O	
GW Extractio	n Method:	Bai	1.9	Sur	face (mm):			
		1324	ier					
GROUNDW	ATER GAUGIN	G (PRE-PUR	GE)	GR	OUNDWATER G	AUGING (POST-PURGE)	stran and
The second secon	v reference point)	CONTRACTOR OF SECURITY PROPERTY.	07	CONTRACTOR OF THE PARTY OF THE	L (m below referen	The same of the sa	6.13	
SWL (m bgl)					'L (m bgl)			
Depth to Prod	luct (m below			Dep	pth to Product (m b	elow		
reference poi					erence point):			
Product Thick	ness (mm):				duct Thickness (mn	n):		
Time:				Tim	ne:			
BUDGING A	ND DUVELED	HIERALOAL D	ADAMATTERS			25 10 S 10 10 10 10 10 10 10 10 10 10 10 10 10		Service Service
Time	ND PHYSICO-C	Volume	Pump Rate	Temperatu	re DO (mg/L)	рН (рН	EC (μS/cm)	Redox
(Started)	(Finished)	Purged	(mL/min)	(°C)	16 DO (111g/L)	units)	Le (µ3/cm)	Potential
								(mV)
10:15	10:20	24		16.7	11.56	7.28	14396	208.5
10:25	10:25	21		16.5	11-9	7.32	14501	208.9
10:25	10:30	2 L		16.6	11.2	7.3	3 14456	209.2
1								
				1				
								,
	100	Stabili	sation Criteria	±0.2°C		± 0.05 pl	± 3%	±10 mV
		Stabili	isation Criteria	±0.2°C	±0.2 or ±10%	± 0.05 pl	± 3%	± 10 mV
		Stabil	isation Criteria	±0.2°C			±3%	±10 mV
OBSERVATIO	DNS	Stabil			±10%			
Odour:		Stabil	isation Criteria	She	±10%		±3%	
The state of the s		Stabill P brow	one n/Grey/	She Rec	±10%			
Odour: Colour / Turbid		Stabill P brow	one n/Grey/	She	±10%			
Odour: Colour / Turbid	ity:	Stabill N p brown	one n Grey	She Rec	± 10% een: eent Rain (Days):	units	Non	e
Odour: Colour / Turbid SAMPLING Samples Taken:	ity:	Stabil P brow	one n/Grey/	She Rec	± 10% een: eent Rain (Days):			e
Odour: Colour / Turbid SAMPLING Samples Taken: Containers:	ity:	Stabill N	one n Grey	She Rec	± 10% een: eent Rain (Days):	units	Non	e
Odour: Colour / Turbid SAMPLING Samples Taken: Containers: Field Filtered:	ity:	Stabill N P brown	one n Grey	She Rec	± 10% een: eent Rain (Days):	units	Non	e
Odour: Colour / Turbid SAMPLING Samples Taken: Containers:	ity:	Stabill N p brown	one n Grey	She Rec	± 10% een: eent Rain (Days):	units	Non	e

0

7/2/13

Document Version:

Updated:

Samples Taken:

Containers: Field Filtered: Preservation: Primary

GROUNDWATER MONITORING RECORD FORM

Aargus									
PROJECT IN	FORMATION	CN AND SHIP	C. Statistics	VA II			L. L. L.	19 2/12	AND LONGER
Client:	Iris	Capita	ر ل			ring Well ID:		SW	12
Site Address:	167, H	ume higher	oy, Gueno	core '	Logged By:		SAAD		
Project:	ESBS		120		Date:	941		02/09	1/21
MONITORI	NG WELL DETA	AIĻS	机器分配法			1446	性学的政		是自己的
Depth (m) as	constructed:	7	.,9		Depth	(m) as measured	:	786	
Finish:					Co-ord	inates:			
Condition:					Survey	ed Levels:			
METHODO	LOGY AND EQ	UIPMENT	经特别 (1)			The State of the State of		《图集》 在	THE WAR THE STATE OF
Water Measu	rement Device:	Tape	Markur	•	Refere	nce Point:		6C	
Water Quality	y Meter:	,				nce Point to Gro	und	^	
CIM Fotos etic	- 80-4b - d.				Surface	e (mm):		0	
GW Extraction	n Metnoa:	<u>Saile</u>	2						
CDOWNER	MATER CAME			orea (commission)	CD CI	MDWATER C	ALICING	DOCT DUDG	
	ATER GAUGIN			a restrict	TOTAL DISTRICT THE PARTY OF THE	INDWATER G	The second second	-	15) Tables and the same
	w reference point	E	2,5		SWL (n		e pointy.	7.1	
SWL (m bgl)	duck for history		5.5				Now	4.1	
reference poi	duct (m below int):				Depth to Product (m below reference point):				
Product Thick					Product Thickness (mm):				
Time:					Time:				
PURGING A	AND PHYSICO-	CHEMICAL PA	ARAMETERS		1-1-1		A-same		经验
Time	Time	Volume	Pump Rate	Temp	erature	DO (mg/L)	рН (рН	EC (µS/	
(Started)	(Finished)	Purged	(mL/min)	('	,C)		units)		Potential (mV)
10.1.0	10.11.	21		16	.8	6 11.00	7.30	909	
10:40	10:44	21				生115			
10:45	10; 49	2 L		16	.6	11.7	7.38	3 920	8 211.5
10150	10:55	2 L		16	.7	10.5	7.3	9 814	8 212.3
(0.3									
	10 m	Stabil	isation Criteria	±0	.2°C	± 0.2 or	± 0.05 p	H ±3	% ± 10 mV
	British Committee					±10%	units		The second secon
			MANAGE ET AUNTER SERVICE	nt cardona	and the set of the		The Mark to Mark 200		
OBSERVAT	IONS								
Odour:		Ne	one,		Sheen			Non	le .
Colour / Turb	idity:	P. brown	one /Grey/ Nig		Recen	t Rain (Days):			
	4		"hig	hly.	Tuck	yd by			
SAMPLING	原图图像 以及 0 大台			U					

Record Checked by:	Document Version:	0
Date:	Updated:	7/2/13

Split

Blind

TS/TB

Rinsate

Aargus	IDWATER MONITO	ORING RECORD FO	RM
PROJECT INFORMATION	No. 1992 No. of the State of th	《新兴》的《大学》, 《新兴》	是是100mm的是100mm的100mm。
Client:	is Capital	Monitoring Well ID:	GW 4
Site Address: 167 Hom	L Huy, Greenaere	Logged By:	SAAO
Project:	378 - PSI	Date:	02/09/21
MONITORING WELL DETAILS	3	Report and April 61	沿海海洲的对地方,每
Depth (m) as constructed:	7.7	Depth (m) as measured:	6.65
Finish:	•	Co-ordinates:	
Condition:		Surveyed Levels:	
METHODOLOGY AND EQUIP	PMENT		1000 A
Water Measurement Device:	Tape Measure	Reference Point:	Pipe top
Water Quality Meter:		Reference Point to Ground	
		Surface (mm):	700 mm
GW Extraction Method:	Hand Bouler		
	å		
GROUNDWATER GAUGING	(PRE-PURGE)	GROUNDWATER GAUGING	POST-PURGE)
SWL (m below reference point):	None	SWL (m below reference point):	None
SWL (m bgl)		SWL (m bgl)	
Depth to Product (m below		Depth to Product (m below	
reference point):		reference point):	
Product Thickness (mm):		Product Thickness (mm):	

	reference point	. 2	one	SVVL (I	n below referen	ce point):	None	
SWL (m bgl)				SWL (n	SWL (m bgl)			·
Depth to Prod reference poir	•			Depth to Product (m below reference point):				
Product Thick	ness (mm):			Produc	t Thickness (mm	n):	160	
Time:				Time:				
PURGING A	ND PHYSICO-	CHEMICAL P	ARAMETERS				尼加州	
Time (Started)	Time (Finished)	Volume Purged	Pump Rate (mL/min)	Temperature (°C)	DO (mg/L)	pH (pH units)	EC (μS/cm)	Redox Potential

Time (Started)	Time (Finished)	Volume Purged	Pump Rate (mL/min)	Temperature (°C)	DO (mg/L)	pH (pH units)	EC (μS/cm)	Redox Potential (mV)
	,							
	and the same	Stabil	isation Criteria	± 0.2 °C	±0.2 or ±10%	± 0.05 pH units	±3%	± 10 mV

OBSERVATIONS	的是是是数据 "特别"		
Odour:	None	Sheen:	None
Colour / Turbidity:	-	Recent Rain (Days):	1

SAMPLING					
Samples Taken:	Primary	Blind	Split	Rinsate	TS/TB
Containers:					
Field Filtered:					
Preservation:					

Record Checked by:	Document Version:	0
Date:	Updated:	7/2/13

Date:

GROUNDWATER MONITORING RECORD FORM

PROJECT INF			The state of the s	TA CO	Monit	oring Well ID:		GWS	
Client:	Tris	Capital Guenavia		Logged By:		SAAD			
Site Address:	167, Huma	- highwa	Date:				02/09/	21	
Project:	E88338	= 0	180		Date.			02/04/	
		Contract transfer		rannana.	No.		1900		
	G WELL DETAIL				Denth	(m) as measure	d:	8.97	NATE OF STREET
Depth (m) as co	nstructed:	9.1	0 ·			linates:	-	8. (4	
Finish:						ed Levels:			
Condition:					Juive	, cu zevelo.			
			A AND COMPANY OF THE PARK		Patrick P		60017 500		W. STORY STATE
	OGY AND EQUI				Refere	ence Point:	国际	Pro top	>
Water Measure	SOMETVINE IN CHAPTER	Tape	Mean			nce Point to Gr	ound	Pipe top	
Water Quality	veter:					e (mm):		12:20	
GW Extraction	Method:	Hand	Barks	ર					
		11000							
GROUNDWA	TER GAUGING	(PRE-PUR	GE)		GRO	UNDWATER O	AUGING (F	OST-PURGE)	图 [[] [[] [] [] [] [] [] [] [] [] [] [] [
	eference point):		10.		SWL (m below referen	ce point):	8.29	
SWL (m bgl)			.79		SWL (m bgl)		7.07	
Depth to Produ	ct (m below	-	· · · ·			to Product (m b	elow		
reference point	•					nce point):	-1.		
Product Thickne	ess (mm):					ct Thickness (mr	n):		
Time:					Time:				
at Commence (100) of California per Management (100)				Section States	12-10.00 EU	WELL WATER THE PROPERTY.		(P) 新典型 (P) (P) (P) (P)	在一种民国
Charles and the Control of the Contr	ID PHYSICO-CH	Control of the Contro		Taman	erature	DO (mg/L)	рН (рН	EC (μS/cm)	Redox
Time (Started)	Time (Finished)	Volume Purged	Pump Rate (mL/min)		C)	DO (IIIg/L)	units)	Le (pay amy	Potential (mV)
11:00	11:04	26		16	.3	10.68	7.05	16081	222.1
	11:09	2L				10.78	7.04	13060	221.7
		26		96	.4	11.50			
11:10	11:15	26		16	12	11.50	7.06	12548	771.2
1. T. A. 10. 0 40 Fig. 10. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	311-1	Ctabil	isation Criteria	+0	2°C	± 0.2 or	± 0.05 pH	±3%	± 10 mV
	A Comment	Stabil	ISation Cinteria	10.	2	± 10%	units		The test was
A THE PROPERTY OF SECURITIES AND ADDRESS OF	1320400 00 200400								
OBSERVATIO	NS		PACE ALL			16 16 17 14 10		Selection of	
Odour:			one		Sheer	n:		None	•
Colour / Turbidi	ty:	P. brow	nlarey			it Rain (Days):			
			ngh	1 tus	bid				
SAMPLING			3 (PARKET SEE	
Samples Taken:	Primary	CONTRACTOR OF THE PARTY OF THE	Blind		Split		Rinsate	TS/T	В
Containers:									
Field Filtered:									
Preservation:									
Record Checked	l by:				Docui	ment Version:		0	

Updated:

7/2/13

Site Inspection Daily Worksheet Record

PROJECT NAME: DOT					
731	PROJECT NO: <i>E\$8338</i>				
CLIENT: IRIS CAPITAL	DATE: 02 109 121				
SITE ADDRESS: 16+, Hume his					
SITE CONTACT:	PHONE:				
AARGUS REPRESENTATIVE: SBS					
TITLE:	PHONE:				
FIELD NOTES:					
Start Time 9:00 AM	Finish Time 11:00AM				
Weather SUMNY	Rainfall (mm) None				
Wind Direction South	Wind Speed 26 km/km				
Humidity 31%	,				
Odours Present None	Staining Present None				
Actions					
	Equipment onsite Hand bailwar.				
	Equipment onsite Hand bailwir. Stormwater Control Qand bays				

APPENDIX M

LABORATORY TECHNICAL INFORMATION

Recommended Preservation and Container Guide

Parameter	Container	Lab Analysis Portion (g) ⁽¹⁾	Eurofins Preferred Preservation	Recommended Holding Times
id Sulfate Soil (pH _{FIELD} & pH _{FOX})	Р	50	Freeze, exclude air	24 hours #
id Sulfate Soil (SPOCAS/CrS)	Р	50	Freeze, exclude air	24 hours #
cohols	G	20	Cool to less than 6°C, Zero Headspace	14 days*
bestos Containing Material (AS4964)	P, Doubled Bag	2 cm x 2cm (minimum)	None, separate sample required	indefinite
bestos (AS4964)	Р	50	None, separate sample required	indefinite
bestos (NEPM or WA Guidelines)	Р	500 mL	None, separate sample required	indefinite
EX / TRH (>C6-C10)	G	20	Cool to less than 6°C, Zero Headspace	14 days*
Ilk Density	G	500		14 days*
ation Exchange Capacity, Exchangeable Cations	G	50	Cool to less than 6°C	28 days ^{NEPM 2013}
nloride, Bromide, Nitrate, Sulfate (1:5 aqueous	G	10	Cool to loop then 6°C	28 days ^{NEPM 2013}
tract)			Cool to less than 6°C	
anide, Total ⁽²⁾	G	20	Cool to less than 6°C	14 days ^{NEPM 2013}
oxins/Furans/DL-PCBs/PBDEs	G	50	Cool to less than 6°C	12 months
plosives	G	50	Cool to less than 6°C	14 days*
reign Materials (RMS NSW Method T276)	Р	6000	None, separate sample required	14 days
dide	G	20	Cool to less than 6°C	28 days
etals (except Mercury or Chromium VI)	G	20	Cool to less than 6°C	6 months ^{NEPM 2013}
ercury or Chromium VI	G	20	Cool to less than 6°C	28 days ^{NEPM 2013}
cro (E. Coli, FC, TC etc.)	P (sterile)	125	Cool to less than 6°C	48 hours
pisture	G	20	Cool to less than 6°C	14 days ^{NEPM 2013}
	G	20	Cool to less than 6°C	24hours recommended ^{NEPM 2013} 7 days allowed ^{NEPM 2013}
	G	20	Cool to less than 6°C	7 days allowed 7 days ^{NEPM 2013}
enols (Totals or Speciated)	G	20	Cool to less than 6°C	14 days*
nenoxy Acid Herbicides	G	20	Cool to less than 6°C	14 days*
emi-Volatile Organic Compounds (SVOC)	G	50	Cool to less than 6°C	14 days ^{NEPM 2013}
CBs (Dioxin-like PCBs, Aroclor, Congener group)	G	50	Cool to less than 6°C	28 days ^{NEPM 2013}
er- and Polyfluoroalkyl Substances (PFAS)	Р	10	Cool to less than 6°C, no teflon liner	14 days, extracts within 28 days
tal Fluoride	G	20	Cool to less than 6°C	28 days
tal Organic Carbon	G	20	Cool to less than 6°C	28 days
RH (>C6-C10) plus BTEX	G	20		
	G	20	Cool to less than 6°C, Zero Headspace	14 days*
latile Organic Compounds (VOC) except Vinyl Chloride, Styrene 2-Chloroethyl Vinyl Ether	G	20	Cool to less than 6°C, Zero Headspace	14 days ^{NEPM 2013}
nyl Chloride, Styrene or 2-Chloroethyl Vinyl Ether	G	20	Cool to less than 6°C, Zero Headspace	7 days ^{NEPM 2013}
PH/TRH (>C10-C40)	G	20	Cool to less than 6°C, Zero Headspace	14 days*
OCs / VHCs / VACs / THMs	G	20	Cool to less than 6°C, Zero Headspace	14 days*
p Spikes/Blanks for C6-C10/BTEX (prepared in the Lab)	G	full jar	<-10°C, Zero Headspace	14 days***
ota (Per- and Polyfluoroalkyl Substances (PFAS))				
sh (fillets, whole)	Р	10	Freeze	14 days, extracts within 28 days
ustacea (whole, white flesh, hepatopancreas)	Р	10	Freeze	14 days, extracts within 28 days
nell fish (whole, edible flesh)	Р	10	Freeze	14 days, extracts within 28 days
eat [Bovine, Ovine, Porcine] (liver, kidney & tissue)	Р	10	Cool to less than 6°C	14 days, extracts within 28 days
eat [Cervine, Leporine, Caprine] (liver, kidney & tissue)	Р	50	Cool to less than 6°C	14 days, extracts within 28 days
	·			
lk [Bovine, Ovine, Caprine]	Р	500 mL	Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
neese [Bovine, Ovine, Caprine]	P P	250	Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
gs (Chicken - white, yolk, whole)	P P	6 each	Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
egetables (Lettuce, Cabbage,	P P	250 250	Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
uit (Avocado, Tomato, Olive, Mango)	P P		Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
ops (Sorghum, Wheat, Corn, Canola) erum - BD Vacutainer®	P P	250	Cool to less than 6°C. Do not freeze	14 days, extracts within 28 days
rum - BD vacutainer®		2x per sample	Cool to less than 6°C. Freeze	14 days, extracts within 28 days
ımma Canister	т.	1L, 6L	Room Temperature	30 days
		TL, OL		
w Uptake Waterloo Membrane Samplers (LU-WMS™)		1	Room Temperature, Cool to less than 6°C	30 days, extracts within 28 days
S EPA Method 325B Passive Sampler	Т	1	Room Temperature, Cool to less than 6°C	30 days
dielle® Deseive Complex DAD120	Т	1	Room Temperature, Cool to less than 6°C	30 days, extracts within 28 days
adiello® Passive Sampler RAD130			Room Temperature, Cool to less than 6°C	30 days
adiello® Passive Sampler RAD130 adiello® Passive Sampler RAD145	Т	1	Toom remperature, Coor to less than o C	oo days
	T	1	Cool to less than 6°C	14 days

REFERENCES: US EPA SW846, NEPM, EPA VIC, ISO5667, Queensland Acid Sulfate Soils Management Advisory Committee (QASSMAC), US EPA Method 821 Please note Maximum THT's may vary upon the guideline document referenced.

NOTES:	(1) (2)	We recommend that you provide additional sample on the 1st, 11th, 21st. 31st etc sample for performance of Duplicates / Matrix Spikes. Note however that Matrix Spike determinations are not appropriate for all tests. Soil samples for cyanide analysis (in cores or jars) must be wrapped in dark plastic and kept cool at < 6°C without further treatment.
	*	Extract within 14 days and analyse within 40 days (Eurofins mgt's preference is to extract within 7 days for volatiles where sufficient time available).
	**	Eurofina I matta profesonas in to analyza as asen as possible

** Eurofins | mgt's preference is to analyse as soon as possible

*** Shelf life in matrix (sand) is low if not frozen, therefore freeze if storing or return to lab with samples immediately

where acidity (hence liming rates) is captured in actual and potential acidity, analysis within one week should be satisfactory. Samples can be dried at 80°C to extend holding time

except Metals/OCPs/PCBs 28 days

CONTAINERS:

P = Plastic (HDPE or equivalent, NO teflon lined lid)

G = Glass (teflon lined lid)

T = Tube

	Soil Samples are discarded two months from the date received unless otherwise arranged.				
	Eurofins Environment Testing - APAC Contact Details				
LOCATION	DELIVERY ADDRESS	TELEPHONE	E-MAIL	MOBILE NUMBERS	
Adelaide	9 Main Terrace, Richmond SA 5033, AUSTRALIA	+61 8 8154 3100	EnviroSampleSA@eurofins.com	+61 409 801 765	
Brisbane	Unit 1, 21 Smallwood Place, Murarrie QLD 4172, AUSTRALIA	+61 7 3902 4600	EnviroSampleQLD@eurofins.com	-	
Darwin	Unit 3, 83 Coonawarra Road, Winellie NT 0820, AUSTRALIA	+61 8 8154 3103	EnviroSampleDRW@eurofins.com	+ 61 428 489 614	
Melbourne	6 Monterey Road, Dandenong South VIC 3175, AUSTRALIA	+61 3 8564 5000	EnviroSampleVic@eurofins.com	-	
Newcastle	Unit 7, 7 Friesian Close, Sandgate, NSW 2304, AUSTRALIA	+61 2 9900 8490	EnviroSampleNTL@eurofins.com	+61 410 220 750	
Perth	Unit 2, 91 Leach Hwy, Kewdale WA 6105, AUSTRALIA	+61 8 9251 9600	EnviroSampleWA@eurofins.com	-	
Sydney	Unit F3, Lane Cove Business Park, 16 Mars Road. Lane Cove NSW 2066, AUSTRALIA	+61 2 9900 8400	EnviroSampleNSW @eurofins.com	-	
Wollongong	Unit 16, 7 Investigator Drive, Unanderra NSW 2526, AUSTRALIA	+61 2 9900 8492	EnviroSampleWOLL@Eurofins.com	+61 447 584 487	
Auckland	35 O'Rorke Road, Penrose, Auckland, Auckland 1061, NEW ZEALAND	+64 9 579 2669 X707	EnviroSampleAKL@eurofins.com	-	
Christchurch	43 Detroit Drive, Rolleston, Christchurch, 7675, NEW ZEALAND	+64 3 343 5227	EnviroSampleCHC@eurofins.com	+64 277 660 233	

Recommended Preservation and Container Guide

	Parameter	Container	Lab Analysis Portion mL ⁽²⁾	Eurofins mgt Preferred Preservation	Recommended Holding Times
Por G	cidity/Alkalinity			6°C	14 days**
P G	lcohols	PT			14 days ⁽³⁾
P					
P				6°C, Zero headspace	
TEX.plain PRINCECTOR PT					
Information Company					
### prof. (Page (PCC) G 100 Prof. (PCC) C 28 days ### prof. (Page (PCC) C C C C C C C C ### prof. (Page (PCC) C C C C C C C C ### prof. (PCC) C C C C C C C C C				pH<2 (HCl or H ₂ SO ₄), 6°C, Zero headspace	
unicote P P 50 P					
Second Content					
P					
P					
Section P					
Note (pink) P					•
Description		Р			
Part December Decem		D-d-D			(-)
Description					
Packet P					
Part					
Part 100					
Part 100 Free neutral, WAD ph 12 (200 H), 600 Dark 14 days 14 days 16 pictows C 500 Field teal Notic (5) 7 days 16 pictows C 500 Field (16 pict), 600 Dark, 2ero Headspace 7 days 100 Dark		·			
Section Comparison Compar		· · · · · · · · · · · · · · · · · · ·			
Part					
P					
Description P S0 6°C 28 days					-
Manufacture G 100 6°C 7 days					
Application A MAPA		·			
Address					·
Description Part Society Society See System Society See System See	2.				
Belance		Р			
n Balance					
Part Dotal (Recoverable) P Dotal (Recoverable) P Dotal (Recoverable) P Dotal Recoverable P Dotal R					
Part 100 Field Filter 10.45 jm then pH+2 (HNO ₂) 6 months erroruy - (Total Recoverable) P 100 Field Filter at 0.45 jm then pH+2 (HNO ₂) 28 days erroruy - Dissolved P 100 Field Filter at 0.45 jm then pH+2 (HNO ₂) 28 days erroruy - Dissolved P 100 Field Filter at 0.45 jm then pH+2 (HNO ₂) 28 days erroruy - Dissolved P 100 Field Filter at 0.45 jm then pH+2 (HNO ₂) 28 days errorus - Dissolved P 100 PH+2 (HClO of H ₂ SO ₂), 6°C P 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C 28 days PH+2 (HClO of H ₂ SO ₂), 6°C PH+2 (H ₂ SO		Р			6 months
ercury — Dissolved P 100		Р	100		
ethane (Ethane/Ethane) PT	ercury – (Total Recoverable)	P	100		28 days
ethane (Ethane/Ethane) PT	ercury – Dissolved	P	100	Field Filter at 0.45 µm then pH<2 (HNO ₃)	28 days
trogen: TKN P or G 100 pH-2 (H,SO,), 6°C!) 28 days trate / NOX P or G 50 unpreserve 6°C / 2 days ** / 7 days trate / NOX p or G 50 unpreserve 6°C / 2 days ** / 7 days trogen: Total N	ethane (Ethane/Ethene)	PT	2 x vials		
Por G S0 unpreserve 6°C / PH<2 (H ₂ SO ₂), 6°C 2 days ** / 7 days introder					
Intrine					
Itagen: Total N					
Ill Crosses G					
C/OP Pesticides - see SVOCs G see SVOC G°C 7 days*		G	2 x 500		28 days
AHS - see SVOCs below G see SVOC 6°C 7 days* PET 250 6°C add 0.009% Na_S_SO_0** 14 days 14 days 14 days 14 days 14 days 14 days 15 days* Por G 100 Field Test, 6°C Note (5) Note (5) Note (5) Note (5) Note (5) Note (5) Por G 100 pH<2 (H_SO_), 6°C 28 days* Per G 28 days* Per G 50 6°C 7 days* Note (5) Por G 50 6°C 7 days* Nosphorus (Total filtered or unfiltered) Por G 50 6°C 2 days** Posphorus (Total filtered or unfiltered) Polidis (suspended, dissolved etc) P 500-1000 6°C 7 days Uphate P 500 6°C 28 days Uphate P 500 6°C 24 hours Urfactants – anionic (MBAS) G 250 6°C 24 hours Urfactants – anionic (MBAS) G 250 6°C 24 hours Urfactants – anionic (MBAS) G 250 6°C 7 days* PH (-C-C-C-U0) PT As for BTEX no additional needed valiation elevel Organics VOC's (USEPA 8270 list) G As for SVOC normal no additional needed virials needed valiational needed virials needed viri		G			
FOSIPFOA/Fluorotelomers					
## free CO2 / total CO2 ## or G ## of	FOS/PFOA/Fluorotelomers	PET	250		14 days
Por G 100 pH-2 (H,SO ₂),6°C 28 days PNA					
Nenols - speciated G See SVOC Se°C 7 days*	-				
Nemoxy Acid Herbicides					
Por G So Bosphate (ortho) Por G So Bosphate (ortho	<u> </u>				
Description of the component of the co			* * * *		
Dilids (suspended, dissolved etc)					
Description of the content of the		Р			
Diphide (Total)		Р			
Description Part 100 6°C 24 hours 24 hours 250 6°C 2 days 250		Р			
As for SVOC Normal Pr Cot	ulphide (Dissolved)	Р	100		
As for BTEX no additional needed PH (>C10-C40) PT As for SVOC normal in additional needed PH (>C10-C40) PT PT PT PT PT PT PT P	urfactants – anionic (MBAS)	G	250		2 days
AHS, Phthalates (normal level) plus TPH C10-C40) 6°C 7 days* 4 x 500 6°C 7 days* 4 x 500 6°C 7 days* 4 x 500 6°C 7 days* PH (>C6-C10) PT As for BTEX no additional vials needed vials needed plus needed vials needed and additional vials needed vials needed plus needed vials needed and additional vials needed plus needed vials needed vials needed and needed vials needed and needed vials needed plus needed vials needed vials needed and needed vials needed needed needed vials needed vials needed n	VOCs including - OCs, OPs, PCBs.				
C10-C40 C20-C40 C20-	AHs, Phthalates (normal level) plus TPH	G	2 x 500	6°C	7 days*
VOC's (USEPA 8270 list) G see SVOC 6°C 7 days*		, and the second		0.6	, days
PH (>C6-C10) PT As for BTEX no additional vials needed PH (>C10-C40) G As for SVOC 'normal' no additional needed arbidity Prog 100 Analyse Immediately, dark, 6°C 48 Hours DCs / VHCs / VACs / THMs / MTBEs ^ PT 2xvials PET/S 120 6°C 24 hours 24 hours 24 hours					
vials needed vials needed pH<2 (HCI), 6°C, Zero headspace 14 days (14 days (15 days)) PH (>C10-C40) G As for SVOC 'normal' no additional needed vials (15 days) Por G 100 Analyse Immediately, dark, 6°C 48 Hours DCs / VHCs / VACs / THMs / MTBEs ^ PT 2xvials pH<2 (HCI or H ₂ SO ₄), 6°C, Zero headspace (17 days) PET/S 120 6°C 24 hours 24 hours	VOC's (USEPA 8270 list)	G		6°C	7 days*
Additional needed BC	PH (>C6-C10)	PT		pH<2 (HCI), 6°C, Zero headspace	14 days ⁽³⁾
urbidity P or G 100 Analyse Immediately, dark, 6°C 48 Hours OCs / VHCs / VACs / THMs / MTBEs ^ PT 2xvials pH<2 (HCl or H ₂ SO _d), 6°C, Zero headspace ⁽⁷⁾ 14 days ⁽³⁾ licrobiological PET/S 120 6°C 24 hours licro' – (in Chlorinated Water) Coliforms - PET/S 500 (4*120) 6°C - 0.008% Na S.O. 24 hours	PH (>C10-C40)	G		6°C	7 days*
OCs / VHCs / VACs / THMs / MTBEs ^ PT 2xvials pH<2 (HCl or H ₂ SO ₄), 6°C, Zero headspace ⁽⁷⁾ 14 days (3) icrobiological PET/S 120 6°C 24 hours icro' – (in Chlorinated Water) Coliforms - PET/S 500 (4*120) 6°C - 0.008% No. S.O. 24 hours	urbidity	P or G		Analyse Immediately, dark 6°C	48 Hours
icrobiological PET/S 120 6°C 24 hours icro' – (in Chlorinated Water) Coliforms - PET/S 500 (4*120) 6°C 0.008% No. S.O. 24 hours					
icro' – (in Chlorinated Water) Coliforms - PFT/S 500 (4*120) 6°C - 0 008% No. S. C. 24 hours					
	icro' – (in Chlorinated Water) Coliforms -				

- NOTES:

 (1) This test may not require preservation if received and analysed within 24 hours of sampling; this must be pre-arranged with the laboratory.

 (2) We recommend that you provide additional sample on the 1st, 11th, 21st, 31st etc sample for performance of Duplicates / Matrix Spikes. (Note however that Matrix spike are not appropriate for all tests).

 (3) USEPA recommends 14 days, Australian Standard recommends 7 days.

 (4) If Dissolved Metals are requested, the Ferrous Iron sample must be field filtered before being preserved

 (5) This analyte should be determined in the field, these tests will not be measured for compliance to holding time but are analysed on receipt

 (6) Holding Time is reduced to 24hrs with the presence of sulphides. Contact the laboratory if the presence of sulphides is suspected

 (7) Sodium Bisulfate is an alternative preservation for VOC analysis upon request

 (8) If residual chlorine is present then add 0.0039% Nas:Sod 7

 * This holding time requires the samples to be extracted within 7 days and analysed within 40 days.

 **The Eurofins Ingt aim is to perform these analyses within 2 days (Mere sufficient time available).

 ## The holding times may be extended to 28 days if the sample is filtered then frozen.

 * Excepting vinyl chloride, styrene or 2-chloroethyl vinyl ether, for which the holding time is 7 days with the same preservation

 **Liquid samples are discarded 4 weeks from the date received.

CONTAINERS:
P = Plastic (HDPE or equivalent, all teflon lined), batch tested
PT = Purce & Trap VOA Vial (with teflon liner), batch tested
PT = Plastic (polyterephthalate), batch tested
PP = Plastic (polytoropylene, no Teflon), batch tested
G = Glass (all teflon lined), batch tested
G = Plastic (polytoropylene)

Liquid samples are discarded 4 weeks from the date received

ANALYTICAL METHOD SUMMARIES

Organics	A water sample that has been dechlorinated and preserved with a microbial inhibitor is fortified with the isotopically labelled SUR, 1,4-dioxane-d8.	
	dechlorinated and preserved with a microbial inhibitor is fortified with the isotopically labelled SUR, 1,4-dioxane-d8.	
1,4-Dioxane*	The sample is extracted by one of two SPE options. In option 1, a 500-mL sample is passed through an SPE cartridge containing 2 g of coconut charcoal to extract the method analyte and SUR. In option 2, a 100-mL sample is extracted on a Waters AC-2 Sep-Pak or Supelco Supelclean ENVI-Carb Plus cartridge. In either option, the compounds are eluted from the solid phase with a small amount of dichloromethane (DCM), approximately 9 mL or 1.5 mL, respectively. The extract volume is adjusted, and the IS, tetrahydrofuran-d8 (THF-d8), is added. Finally, the extract is dried with anhydrous sodium sulfate. Analysis of the extract is performed by GC/MS. The data provided in this method were collected using splitless injection with a high-resolution fused silica capillary GC column that was interfaced to an MS operated in the SIM mode. The analyte, SUR and IS are separated and identified by comparing the acquired mass spectra and retention times for calibration standards acquired under identical GC/MS conditions. The concentration of the analyte is determined by comparison to its response in calibration standards relative to the IS.	US EPA Method 522 DETERMINATION OF 1,4- DIOXANE IN DRINKING WATER BY SOLID PHASE EXTRACTION (SPE) AND GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC/MS) WITH SELECTED ION MONITORING (SIM): EPA/600/R-08/101
Methamphetamine in Swabs	TARGET ANALYTES:	NIOSH Method 9111 - METHAMPHETAMINE on Wipes by Liquid Chromatography/Mass Spectrometry

Analyte	Method	Reference Method
Allalyte	plasticisers and contamination of the	Reference Method
	samples.	
	2. Place the supplied 10 cm x 10 cm	
	template over the area to be sampled (may	
	tape in place along outside edge of	
	template). Wipe the surface to be sampled	
	with firm pressure, using vertical S-strokes.	
	Fold the exposed side of the pad in and	
	wipe the area with horizontal S-strokes.	
	Fold the pad once more and wipe the area	
	again with vertical S-strokes.	
	3. Fold the pad, exposed side in, and place	
	in supplied shipping container and seal	
	with cap.	
	NOTE: Keep samples refrigerated (<6 °C).	
	While nicotine and related compounds are	
	stable on the recommended wipe media	
	for at least 7 days at room temperature,	
	refrigeration is recommended as soon as	
	possible.	
	4. Clean the template before use for the	
	next sample or use a new disposable	
	template.	
	5. Label each sample clearly with a unique	
	sample identifier.	
	6. Prepare a minimum of two field blanks	
	with one field blank for every ten samples.	
	SAMPLE PREPARATION:	
	7. Description from media:	
	a. Remove cap from shipping container.	
	Sample media should fit loosely in the container. If not, rearrange media carefully	
	with rinsed forceps or transfer to a larger	
	container. If the sample media are	
	transferred to a larger container, do not	
	discard the original container. Samples	
	may consist of more than one wipe. If this	
	is the case, internal standard and	
	desorption solution volumes may be	
	adjusted accordingly.	
	b. Spike exactly 50 µL of internal standard	
	spiking solution onto each wipe sample.	
	c. Add 30 mL desorption solution. If the	
	samples were transferred to a larger	
	container, the original shipping container	
	must be rinsed with the desorption solution	
	first, shaken, and the rinsate decanted into	
	the larger container.	
	d. Cap securely and mix contents by	
	inverting the tubes end over end on a	
	rotary mixer at 10-30 rpm for at least one	
	hour.	
	NOTE 1: The desorption solution must	
	percolate freely through the gauze wipes.	

Analyte	Method	Reference Method
,	e. Filter an aliquot of the sample through a 0.45 µm membrane. 8. Transfer the filtered sample into a vial and cap. 9. Analyse samples, standards, blanks, and Quality Control samples (QCs) by LC-MS/MS or LC-QToF-MS using in-house method LTM-ORG-2240.	
Methane in Water	The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent contaminated aquifer. A helium headspace is generated above a water-filled bottle. Gases that are dissolved in the water partition between the gas and liquid phases and equilibrate rapidly. An aliquot of this headspace is analysed by gas chromatography to determine the gases' concentration in this phase. The concentration of the gas dissolved in the water can then be calculated based on its partitioning properties, as indicated by its Henry's Law constant using in-house LTM-ORG-2070	Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique., Don H. Kampbell* and Steve A. Vandegrift., U.S. Environmental Protection Agency, Journal of Chromatographic Science, Vol. 36, May 1998
Per- and Polyfluoroalkyl Substances (PFAS) in Water	A water sample is fortified with isotopically labelled surrogates and passed through an IXR solid phase extraction (SPE) cartridge to extract the method analytes and surrogates. The compounds are eluted from the solid phase with a small amount of methanol with modifier. The extract is concentrated to near dryness under reduced pressure in an automated system and then adjusted to a final volume with mobile phase after adding the injection standards IS(s). An injection is made into an LC equipped with a C18 column that is interfaced to a tandem mass spectrometer (MS/MS) operating in scheduled MRM mode. The analytes are separated and identified by comparing the acquired mass spectra and retention times to reference spectra and retention times for calibration standards acquired under identical LC-MS/MS conditions. The concentration of each analyte is determined by using the isotope dilution technique. Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available – see Table below. Labelled compounds are enriched with deuterium to produce ² H-labeled analogues, stable isotopes of oxygen-18 to	US EPA Method 533: Determination of Per- And Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry., November 2019 US EPA Method 537.1 Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction And Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) Version 1.0, November 2018

Analyte	Method	Reference Method
	produce ¹⁸ O -labelled analogues or carbon-13 to produce ¹³ C-labeled analogues. The labelled analogues are spiked into each sample to allow identification and correction of the concentration of the native compounds in the extraction, clean-up and the analytical process. Correction of reported results along with a statement of the recovery for labelled analogues are included in the certificate of analysis. Typical recoveries are between 50-150% (± 50%) depending on media and the specific analyte. An initial calibration is prepared for each native compound. Internal standard calibration is applied to the determination of the native compounds that do not have exact labelled analogues and that are not being quantified by isotope dilution. The recoveries of the labelled analogues themselves are determined by internal standard quantitation (ISTD) and used as a quality control check on the overall analytical process. Branched and linear isomers are used for calibration standards when they are commercially available as a certified standard. Table 2 lists standards that are currently commercially available and used. The target analyte response for analytes containing branched and linear isomer result from the summation of peaks from all isomers. Limit of reporting is listed in Table 3: PFAS LORs - Water, Soil/Sediments & Biotic Matrices. The LOR obtainable is dependent on the matrix and method. The limit of reporting may be affected by the presence of other contaminants or components in individual samples that cause analytical interferences that raise the achievable LOR. This problem is more likely to occur in complex matrices such as soil, waste, biosolids and biota samples.	US EPA Method 8327 - Per- and polyfluoroalkyl substances (PFAS) using external standard calibration and multiple reaction monitoring (MRM) liquid chromatography/tandem mass spectrometry (LC/MS/MS) United States of America's Department of Defense (DoD) Environmental Data Quality Workgroup (EDQW) and the Department of Energy (DOE) Consolidated Audit Program (DOECAP) Operations Team developed the Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.3 May 2019 UNITED STATES DEPARTMENT OF DEFENSE Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15 Environmental Data Quality Workgroup 1 May 2020
Per- and Polyfluoroalkyl Substances (PFAS) in Soils	The sample is homogenised, spiked with isotopically labelled surrogates solution and digested with 1M NaOH by heating and ultrasonic agitation, followed by incubation. Samples are neutralised with	USEPA Method EPA-821- R-11-007 Draft Procedure for Analysis of Perfluorinated Carboxylic Acids and Sulfonic Acids

Analyte	Method	Reference Method
- mary to	HCl and extracted with solvent. Solvent extraction and clean-up is then performed using 50:50/ACN:MeOH (v/v) and then cleaned up using a carbon solid-phase extraction (SPE) cartridge. An injection is made into an LC equipped with a C18 column that is interfaced to a tandem mass spectrometer (MS/MS). The analytes are separated and identified by comparing the	in Sewage Sludge and Biosolids by HPLC/MS/MS December 2011 US EPA Method 8327 - Per- and polyfluoroalkyl substances (PFAS) using
	acquired mass spectra and retention times to reference spectra and retention times for calibration standards acquired under identical LC-MS/MS conditions. The concentration of each analyte is determined by using the isotope dilution technique. Isotope dilution is used for calibration of each native compound for	external standard calibration and multiple reaction monitoring (MRM) liquid chromatography/tandem mass spectrometry (LC/MS/MS)
	which an exact labelled analogue is available – see Table below. Labelled compounds are enriched with deuterium to produce ² H-labeled analogues, stable isotopes of oxygen-18 to produce ¹⁸ O - labelled analogues or carbon-13 to produce ¹³ C-labeled analogues. The labelled analogues are spiked into each sample to allow identification and correction of the concentration of the native compounds in the extraction, cleanup and the analytical process. Correction of reported results along with a statement of the recovery for labelled analogues are included in the certificate of analysis.	USEPA Method 533: Determination of Per- And Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry., November 2019
	Typical recoveries are between 50-150% (± 50%) depending on media and the specific analyte. An initial calibration is prepared for each native compound. Internal standard calibration is applied to the determination of the native compounds that do not have exact labelled analogues and that are not being quantified by isotope dilution. The recoveries of the labelled analogues themselves are determined by internal standard quantitation (ISTD) and used as a quality control check on the overall	United States of America's Department of Defense (DoD) Environmental Data Quality Workgroup (EDQW) and the Department of Energy (DOE) Consolidated Audit Program (DOECAP) Operations Team developed the Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.3
	analytical process. Branched and linear isomers are used for calibration standards when they are commercially available as a certified standard. Table 2 lists standards that are currently commercially available and used. The target analyte response for analytes	May 2019 UNITED STATES DEPARTMENT OF DEFENSE

Analyte	Method	Reference Method
	containing branched and linear isomer result from the summation of peaks from all isomers.	Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by
	Limit of reporting is listed in Table 3: PFAS LORs - Water, Soil/Sediments & Biotic Matrices. The LOR obtainable is dependent on the matrix and method. The limit of reporting may be affected by the presence of other contaminants or components in individual samples that cause analytical interferences that raise the achievable LOR. This problem is more likely to occur in complex matrices such as soil, waste, biosolids and biota samples.	QSM Table B-15 Environmental Data Quality Workgroup 1 May 2020
	The sample is cryogenically milled with dry ice, a homogenate taken and spiked with isotopically labelled surrogates solution. The sample is sonicated and vortexed and then neutralised with HCl before adding acetonitrile and again sonicated and vortexed before QuEChERS extraction is undertaken. Depending on the particular biotic matrix ENVI-carb SPE may be utilised prior to mixed-mode reversed phase WAX SPE was used before concentration to a known volume.	US EPA Method 8327 - Per- and polyfluoroalkyl substances (PFAS) using external standard calibration and multiple reaction monitoring (MRM) liquid chromatography/tandem mass spectrometry (LC/MS/MS)
Per- and Polyfluoroalkyl Substances (PFAS) in Biotic Matrices	An injection is made into an LC equipped with a C18 column that is interfaced to a tandem mass spectrometer (MS/MS). The analytes are separated and identified by comparing the acquired mass spectra and retention times to reference spectra and retention times for calibration standards acquired under identical LC-MS/MS conditions. The concentration of each analyte is determined by using the isotope dilution technique. Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available – see Table below. Labelled	USEPA Method 533: Determination of Per- And Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry., November 2019
	compounds are enriched with deuterium to produce 2H-labeled analogues, stable isotopes of oxygen-18 to produce 18O - labelled analogues or carbon-13 to produce 13C-labeled analogues. The labelled analogues are spiked into each sample to allow identification and correction of the concentration of the native compounds in the extraction, cleanup and the analytical process. Correction	United States of America's Department of Defense (DoD) Environmental Data Quality Workgroup (EDQW) and the Department of Energy (DOE) Consolidated Audit Program (DOECAP) Operations Team

Analyte	Method	Reference Method
	of report results along with a statement of the recovery for labelled analogues are included in the certificate of analysis. Typical recoveries are between 50-150% (± 50%) depending on media and the specific analyte.	developed the Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.3 May 2019
	An initial calibration is prepared for each native compound. Internal standard calibration is applied to the determination of the native compounds that do not have exact labelled analogues and that are not being quantified by isotope dilution. The recoveries of the labelled analogues themselves are determined by internal standard quantitation (ISTD) and used as a quality control check on the overall analytical process.	UNITED STATES DEPARTMENT OF DEFENSE Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15 Environmental Data Quality Workgroup
	Branched and linear isomers are used for calibration standards when they are commercially available as a certified standard. Table 2 lists standards that are currently commercially available and used. The target analyte response for analytes containing branched and linear isomer result from the summation of peaks from all isomers.	1 May 2020
	Limit of reporting is listed in Table 3: PFAS LORs - Water, Soil/Sediments & Biotic Matrices. The LOR obtainable is dependent on the matrix and method. The limit of reporting may be affected by the presence of other contaminants or components in individual samples that cause analytical interferences that raise the achievable LOR. This problem is more likely to occur in complex matrices such as soil, waste, biosolids and biota samples.	
Total Oxidisable Precursor Analysis (TOPA) - Screen	Samples are treated via hydroxyl radical oxidation using an activated agent with overnight heating which converts the masked fluorinated precursors to their equivalent detectable perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs). LC-MS/MS is done before and after TOP Analysis.	Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff, Erika F. Houtz and David L. Sedlak, Environ. Sci. Technol. 2012

Analyte	Method	Reference Method
	Detailed TOPA includes multiple mass- labelled analogues added prior to the "cooking" step and the recoveries provided along with dilutions required are reported in the certificate of analysis. Sum of all PFAS are reported pre- and post TOPA along with. Results for total PFAS concentration post-TOPA should be greater or equal to the total PFAS concentration pre-TOPA, (signifies no material losses observed in preparation steps, noting a decrease of up to 10% might be expected due to normal analytical variability).	
Total Oxidisable Precursor Analysis (TOPA) – Detailed	 the sum of PFCA post-TOPA should be equal to or greater than the sum of PFCA pre-TOPA, which signifies any precursors being converted to PFCA products. the sum of PFSA post-TOPA should approximate the sum of PFSA pre-TOPA, signifying that precursors did not convert to PFSA products. 	PFAS National Environmental Management Plan JANUARY 2020
	 for a full oxidation, no PFAA precursors (e.g. 6:2 FTS, FOSA) are detectable post oxidation, signifying complete oxidation. for situations where a near complete oxidation is acceptable, minimal PFAA 	
	 precursors are detectable post oxidation signified by: for aqueous samples, sum of [PFAA precursors] divided by sum of [Total PFAS] <5%. 	
	 for soil samples, sum of [PFAA precursors] divided by sum of [Total PFAS] <10%. 	
	 noting greater leniency may be applied for samples where PFAS were detected ≤ 10 times LOR. 	

nalyte	Method	Reference Method	
Table 1: Per- and	Polyfluoroalkyl Substances	(PFAS)	
Native PFASs Perfluoroalkyl carbox	cylic acids (PFCAs)	Extracted Internal Standard Analytes (EIS) Isotope Dilution Quantification Standard	
Perfluorobutanoic acid (PFBA)		Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid	
Perfluoropentanoic acid	, ,	Perfluoro-n-[1,2,3,4,5-13C ₅]pentanoic acid	
Perfluorohexanoic acid	· /	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]hexanoic acid	
Perfluoroheptanoic acid		Perfluoro-n-[1,2,3,4-¹3C₄]heptanoic acid	
Perfluorooctanoic acid		Perfluoro-n-[1,2,3,4,5,6,7,8- 13 C ₈]octanoic acid Perfluoro-n-[1,2,3,4,5- 13 C ₅]nonanoic acid	
Perfluorononanoic acid Perfluorodecanoic acid		Perfluoro-n-[1,2,3,4,5,6-13C ₆]decanoic acid	
Perfluoroundecanoic acid	1	Perfluoro-n-[1,2-3,4,5,6- C6]decanoic acid	
Perfluorododecanoic a	1 /	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid	
Perfluorotridecanoic ad	, ,	Perfluoro-n-[1,2- ¹³ C ₂]tetradecanoic acid ISTD	
Perfluorotetradecanoic	1 /	Perfluoro-n-[1,2- ¹³ C ₂]tetradecanoic acid	
Perfluoroalkane sulfo	onic acids (PFSAs)		
Perfluoropropanesulfor	nic acid (PFPrS)	Sodium perfluoro-n-[2,3,4-13C3]butane sulfonate ISTD	
Perfluorobutanesulfoni	c acid (PFBS)	Sodium perfluoro-n-[2,3,4-13C3]butane sulfonate	
Perfluoropentane sulfo	, ,	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octane sulfonic acid ISTD	
Perfluorohexane sulfor		Sodium perfluoro-n-[18O ₂]hexanesulfonate	
Potassium perfluorohe: isomers) (br-PFHxSK)	xanesulfonate (linear and branched	Sodium perfluoro-n-[18O ₂]hexanesulfonate	
Perfluoroheptane sulfo	nate (PFHpS)	Perfluoro-n-[1,2,3,4-13C4]octane sulfonic acid	
Perfluorooctane sulfona	, ,	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate	
Potassium perfluorooct isomers) (br-PFOSK)	tanesulfonate (linear and branched	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate	
Perfluorononanesulfoni Perfluorodecanesulfoni	,	Perfluoro-n-[1,2,3,4-¹³C₄]octane sulfonic acid ISTD Perfluoro-n-[1,2,3,4-¹³C₄]octane sulfonic acid ISTD	
		sulfonamido ethanols (FASEs) and N-alkyl perfluoroalkane	
perfluoroalkane sulfo	namido acetic acids (MeFASAAs, E		
perfluoroalkane sulfo Perfluorooctane sulfona	namido acetic acids (MeFASAAs, E		
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-oc	namido acetic acids (MeFASAAs, E amide (FOSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa N-ethylperfluoro-1-octa	namido acetic acids (MeFASAAs, E amide (FOSA) ctane sulfonamide (N-MeFOSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide	
perfluoroalkane sulfon Perfluorooctane sulfona N-methylperfluoro-1-octa N-ethylperfluoro-1-octa 2-(N-methylperfluoro-1- MeFOSE)	onamido acetic acids (MeFASAAs, E amide (FOSA) ctane sulfonamide (N-MeFOSA) anesulfonamide (N-EtFOSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1- MeFOSE) 2-(N-ethylperfluoro-1-o EtFOSE)	namido acetic acids (MeFASAAs, E amide (FOSA) ctane sulfonamide (N-MeFOSA) anesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N-	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-o EtFOSE) N-ethyl-perfluorooctane EtFOSAA) N-methyl-perfluoroocta MEFOSAA)	namido acetic acids (MeFASAAs, E amide (FOSA) ctane sulfonamide (N-MeFOSA) anesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N-	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-o EtFOSE) N-ethyl-perfluorooctane EtFOSAA) N-methyl-perfluoroocta MEFOSAA) Fluorotelomers	namido acetic acids (MeFASAAs, E amide (FOSA) stane sulfonamide (N-MeFOSA) anesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N-	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid	
perfluoroalkane sulfon Perfluorooctane sulfona N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-o EtFOSE) N-ethyl-perfluorooctana EtFOSAA) N-methyl-perfluoroocta MEFOSAA) Fluorotelomers n:2 Fluorotelomer sulfona	pramido acetic acids (MeFASAAs, E amide (FOSA) etane sulfonamide (N-MeFOSA) enesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ectane sulfonamido)-ethanol (N- esulfonamidoacetic acid (N- enesulfonamidoacetic acid (N-	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa EtFOSE) N-ethyl-perfluorooctane EtFOSAA) N-methyl-perfluoroocta MEFOSAA) Fluorotelomers n:2 Fluorotelomer sul 1H,1H,2H,2H-Perfluoro	pramido acetic acids (MeFASAAs, E amide (FOSA) stane sulfonamide (N-MeFOSA) anesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- actane sulfonamido)-ethanol (N- actane sulfonamido)-ethanol (N- actane sulfonamidoacetic acid (N-	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 1-0-octa	pramido acetic acids (MeFASAAS, E amide (FOSA) etane sulfonamide (N-MeFOSA) enesulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ectane sulfonamido)-ethanol (N- esulfonamidoacetic acid (N- enesulfonamidoacetic acid (N- enesulfonamidoacetic acid (N- enesulfonamidoacetic acid (N- elfonic acids (n:2 FTSAS) enesulfonic Acid (4:2 FTSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA)	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa MeFOSE) 2-(N-ethylperfluoro-1-octa EtFOSE) N-ethyl-perfluorooctane EtFOSAA) N-methyl-perfluoroocta MEFOSAA) Pluorotelomers n:2 Fluorotelomer sul 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamido (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- esulfonamidoacetic acid (N- inesulfonamidoacetic acid (N- inesulfonamidoacetic acid (N- boca acids (n:2 FTSAS) coctanesulfonic Acid (4:2 FTSA) coctanesulfonic Acid (6:2 FTSA) coctanesulfonic Acid (8:2 FTSA) coctanesulfonic Acid (8:2 FTSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-1-octane sulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2	
perfluoroalkane sulfon Perfluorooctane sulfon N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-hethylperfluoro-1-octa Befose) 2-(N-ethylperfluoro-1-octa EtFOSE) N-ethyl-perfluorooctan EtFOSAA) N-methyl-perfluoroocta MEFOSAA) Pluorotelomers n:2 Fluorotelomer sul 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro 1H,1H,2H,2H-Perfluoro	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamido (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-e	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-1-octane sulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA)	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa MeFOSE) N-ethylperfluoroctane EtFOSA) N-methyl-perfluoroctane EtFOSAA) N-methyl-perfluorocta MEFOSAA) Fluorotelomers n:2 Fluorotelomers n:2 Fluorotelomer sulfu,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctanesulfonamidoacetic	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-1-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA)	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoroctane EtFOSE) N-ethyl-perfluoroctane EtFOSAA) N-methyl-perfluorocta MEFOSAA) Fluorotelomers n:2 Fluorotelomer sulfundational Physical Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H,2H-Perfluorocta 1H,1H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H,2H	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctanesulfonamidoacetic	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-1-octane sulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA)	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 3-(N-methyl-perfluorocta 3-(N-m	pramido acetic acids (MeFASAAS, Elamide (FOSA) parametro (FOSA) parametro (POSA) processor (POSA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₃ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) 1 ³ C ₃ -Hexafluoropropylene oxide dimer acid (1 ³ C ₃ -HFPO-DA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 3-(N-methyl-perfluoroocta 3-(N-methyl-	pramido acetic acids (MeFASAAS, Eamide (FOSA) parametro (FOSA) parametro (POSA) processor (POSA) p	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-cotanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluorocta 2-(N-ethylp	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- difonic acids (n:2 FTSAS) coctanesulfonic Acid (4:2 FTSA) coctanesulfonic Acid (6:2 FTSA) coctanesulfonic Acid (8:2 FTSA) coctanesulfonic Acid (10:2 apounds xide dimer acid (HFPO-DA) [GenX) 3-oxaundecane-1-sulfonic acid (11Cl- 30-3-oxanone-1-sulfonic acid (9Cl- nonanoic acid (ADONA) eptanoic acid (NFDHA)	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluorocta 2-(N-ethylp	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulf	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-cotanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoroctane EtFOSE) N-ethyl-perfluoroctane EtFOSAA) N-methyl-perfluorocta MEFOSAA) Pluorotelomers n:2 Fluorotelomers n:2 Fluorotelomer sul 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 1H,1H,2H,2H-Perfluorocta 2-chlorohexadecafluorocta 2-chlorohexadecafluorocta 3-chlorohexadecafluorocta 3-chlorohexadecafluorocta 2-chlorohexadecafluorocta	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulf	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD Perfluoro-n-[1,2,3,4- ¹³ C ₄]heptanoic acid ISTD Sodium perfluoro-n-[2,3,4- ¹³ C ₃]butane sulfonate ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-cta 2-(N-ethylperfluorocta 3-(N-ethyl-perfluorocta 3-(N-ethyl-p	pramido acetic acids (MeFASAAS, E amide (FOSA) stane sulfonamide (N-MeFOSA) -octane sulfonamide (N-EtFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- ctane sulf	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂] hexane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂] hexane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]petanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]butanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]butanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]pentanoic acid ISTD	
perfluoroalkane sulfone Perfluoroctane sulfone N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-methylperfluoro-1-octa 2-(N-ethylperfluoro-1-octa 2-(N-ethylperfluoro-cta 2-(N-ethylperfluorocta 3-(N-ethyl-perfluorocta 3-(N-ethyl-p	pramido acetic acids (MeFASAAS, Eamide (FOSA) amide (FOSA) ane sulfonamide (N-MeFOSA) -octane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamido)-ethanol (N- ctane sulfonamidoacetic acid (N- cesulfonamidoacetic acid (N- cesulfonamidoacetic acid (N- control acids (n:2 FTSAS) control acids (n:2 FTSAS) control acid (6:2 FTSA) control acid (8:2 FTSA) control acid (8:2 FTSA) control acid (Benz) control	Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonamide N-methyl-d ₃ -perfluoro-n-octanesulfonamide N-ethyl-d ₅ -perfluoro-n-octanesulfonamide 2-(N-methyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ 2-(N-ethyl-d ₅ -perfluoro-1-octane sulfonamido)-ethanol-d ₄ N-ethyl-d ₅ -perfluoro-n-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid N-methyl-d ₃ -perfluoro-1-octanesulfonamidoacetic acid Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]hexane sulfonate (4:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]octane sulfonate (6:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]decane sulfonate (8:2 FTSA) Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂ , D4]dodecane sulfonate (10:2 FTSA) Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octane sulfonate ISTD Perfluoro-n-[1,2,3,4,5,6,7,8- ¹³ C ₈]octanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₄]butanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₄]butanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]pentanoic acid ISTD Perfluoro-n-[1,2,3,4,5 ¹³ C ₈]pentanoic acid ISTD	

Analyte	Method	Reference Method
	Table 2: Currently Available Certified PFAS Standards Containing Branched and Linear Isomers Perfluorohexanesulfonic acid (PFHxS)	
	Perfluorooctanesulfonic acid (PFOS) 2-(N-methylperfluorooctanesulfonamido) acetic acid (NMeFOSAA) 2-(N-ethylperfluorooctanesulfonamido) acetic acid (NEtFOSAA)	
Adsorbable Organofluorine (AOF)	For the trace level determination of adsorbable organic fluorine (AOF) in water, the sample must first be passed through a mixed-mode weak anion exchange solid-phase extraction (SPE) cartridge thereby adsorbing the PFAS compounds. AOF is then determined by eluting the contents of the SPE cartridge with NaOH in methanol, evaporating and reconstituting the extract, and finally determining the fluoride content of the extract by CIC. The LOR is dependent on the volume passed through the SPE, so the presence of suspended solids does impose limits on the procedure, but for clean waters the LOR is 0.001 mg F/L. Where significant levels of suspended solids are encountered the LOR may be limited to 0.01 mg F/L and the suspended solids may be determined separately by direct combustion.	ASTM D7359-18 ASTM D7359 Standard Test Method for Total Fluorine, Chlorine and Sulfur in Aromatic Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed by Ion Chromatography Detection (Combustion Ion Chromatography-CIC).
Extractable Organofluorine (EOF)	For solid samples, where LORs lower than the direct combustion method of 0.05 mg F/kg are required, extraction can be performed using the same solvent systems used for conventional targeted LC-MS/MS methods. The resulting concentrate is then combusted giving an extractable organofluorine result. A LOR of 0.02 mg F/kg is achievable.	ASTM D7359-18 Standard Test Method for Total Fluorine, Chlorine and Sulfur in Aromatic Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed by lon Chromatography Detection (Combustion lon Chromatography-CIC).
TRH (Volatile)/BTEX C6-C10 – 2013 NEPM Fractions C6-C9 – 1999 NEPM Fractions	10g soil extracted with 20mL methanol, tumbled for 1 hour, and analysed with solvent and instrument check surrogates. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water direct injection of supplied sample (unopened) and analysis with solvent and instrument check surrogates. Analysis by capillary column Purge and Trap GCMS (Eurofins in-house method numbers: Total Recoverable	USEPA Method 8260D NEPM 2013 Schedule B3 Appendix 1: Determination of total recoverable hydrocarbons (TRH) in soil

Analyte	Method	Reference Method
	Hydrocarbons (TPH), Method: LTM-ORG-2010, Method: LTM-GEN-7080 Moisture). Owing to the differential responses of mass spectrometric detectors towards aliphatic and aromatic compounds, it is essential that the standard contain representatives of both groups. This standard should therefore consist of about 40% aromatic and 60% aliphatic target analytes, to be representative of a typical Australian fuel. The aromatic compounds shall comprise the components of BTEX. The aliphatics shall comprise equal proportions of all n-alkanes in the C6 to C10 range.	
Total Recoverable Hydrocarbons C10- C36 – 1999 NEPM Fractions >C10-C40 – 2013 NEPM Fractions	Soil - 10g soil and anhydrous sodium sulfate extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - One 250ml of water sequentially extracted in a separatory funnel three times with 20mL dichloromethane. Analysis by capillary column GC/FID (Eurofins in-house method numbers: Total Recoverable Hydrocarbons (TRH), Method: LTM-ORG-2010, Method: LTM-GEN-7080 Moisture)	USEPA Method 8015C NEPM 2013 Schedule B3 Appendix 1: Determination of total recoverable hydrocarbons (TRH) in soil
TRH (Silica Gel)	Sample extracts obtained from the appropriate TRH method are exchanged to a non-polar solvent and are passed through a column containing 1 gram of 100% activated silica gel. Elution is achieved with a small volume of 1:1 DCM:pentane or 1:1 DCM:hexane. The eluted solvent is then concentrated and analysed by the appropriate TRH analysis procedure. A decanoic acid reverse surrogate is used to provide assurance of the effectiveness of the silica-gel clean-up.	USEPA Method 3630C NEPM Appendix 1: Determination of total recoverable hydrocarbons (TRH) in soil
VOCs	10g soil extracted with 20mL methanol, tumbled for 1 hour, and analysed with solvent and instrument check surrogates. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water direct injection of supplied sample (unopened) and analysis with solvent and instrument check surrogates. Analysis by capillary column Purge and Trap GC-MS (Eurofins in-house method numbers	US EPA Method 8260D

Analyte	Method	Reference Method
	Method: LTM-ORG-2150, LTM-ORG-2160, Method: LTM-GEN-7080 Moisture).	
Semi-volatile Organic Compounds (SVOCs)	The samples are prepared for analysis by gas chromatography/mass spectrometry (GC/MS) using the appropriate sample preparation (refer to Method 3500) and, if necessary, sample clean-up procedures (refer to Method 3600). The semi-volatile compounds are introduced into the GC/MS by injecting the sample extract into a gas chromatograph (GC) with a narrow-bore fused-silica capillary column. The GC column is temperature-programmed to separate the analytes, which are then detected with a mass spectrometer (MS) connected to the gas chromatograph. Analytes eluted from the capillary column are introduced into the mass spectrometer via a jet separator or a direct connection. Identification of target analytes is accomplished by comparing their mass spectra with the electron impact (or electron impact-like) spectra of authentic standards. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using a five-point calibration curve. NOTE: This method can be used in conjunction with the following sample preparation procedures: Water (including TCLP leachates) - Methods 3510, 3520, 3535 Soil/sediment - Methods 3540, 3541, 3545, 3546 3550, 3560, 3561	USEPA Method 8270E
Phenois/PAHs/PCB s/OPPs/OCs	Soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate and extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - 250ml water sample plus surrogates triple extracted with dichloromethane (base and neutrals). Leachate - 250ml water sample plus surrogates triple extracted with dichloromethane (base and neutrals). Analysis by capillary column GC/MS (Eurofins in-house Methods LTM-ORG-	USEPA Method 8270E

Analyte	Method	Reference Method
	2130, LTM-ORG-2140 Method: LTM-GEN-7080 Moisture).	
Analysis of Phenoxy Acid	A 100-mL water sample is adjusted to a basic pH with sodium hydroxide, shaken, and allowed to set for 1 hour to hydrolyse chlorinated esters. The sample is acidified with H ₃ PO ₄ , filtered, and the chlorinated acids are extracted from a 20-mL aliquot. The aliquot is pumped through a high performance liquid chromatography (HPLC) cartridge (containing C-18-silica), trapping the chlorinated acids. The concentrator cartridge is valved in-line with the C-18 analytical column following extraction. The acids are separated by HPLC and detected using an ultraviolet (UV) absorption spectrometer. LABORATORY TEST METHOD NUMBER: LTM-ORG-2180	US EPA -NERL: Method
Herbicides in Aqueous and Soil Samples by HPLC	soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate are extracted using acetonitrile in an ultrasonic bath, or shaker filtered, diluted with water as appropriate, adjusted to a basic pH with sodium hydroxide, shaken, and allowed to set for 1 hour to hydrolyse chlorinated esters. The sample is acidified with H ₃ PO ₄ , filtered, and the chlorinated acids are extracted from a 20-mL aliquot. The aliquot is pumped through a high performance liquid chromatography (HPLC) cartridge (containing C-18-silica), trapping the chlorinated acids. The concentrator cartridge is valved in-line with the C-18 analytical column following extraction. The acids are separated by HPLC and detected using an ultraviolet (UV) absorption spectrometer. LABORATORY TEST METHOD NUMBER: LTM-ORG-2180	555: Chlorinated Acids in Water Using HPLC/UV
EXPLOSIVES Nitroaromatics, nitramines, and nitrate esters by high performance liquid chromatography (HPLC)	Soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate are extracted using acetonitrile in an ultrasonic bath, or shaker filtered, diluted with water as appropriate, and analysed by HPLC with UV/DAD detection. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - 250ml water sample plus surrogates are pre-concentrated using	USEPA Method 8330B
(HPLC)	surrogates are pre-concentrated using solid-phase extraction, as described in USEPA Method 3535 and then diluted with	

Analyte	Method			Reference Method
	water as appropriate for the selected separations. Leachate - 250ml water sample plus surrogates extracted with SPE.			
DIOXINS Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS [†]	This method is for determination of tetrathrough octa-chlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) in water, soil, sediment, sludge, tissue, and other sample matrices by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). The seventeen 2,3,7,8-substituted CDDs/CDFs may be determined by this method. Specifications are also provided for separate determination of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachloro-dibenzofuran (2,3,7,8-TCDF). The detection limits and quantitation levels in this method are usually dependent on the level of interferences rather than instrumental limitations. †Analysis subcontracted to Eurofins GfA Lab Service GmbH – Hamburg, Germany			USEPA Method 1613B
	This method is for determination of polybrominated diphenyl ethers in water, soil, sediment, sludge, tissue, and other sample matrices by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS).			
	TriBDE	TetraBDE	PentaBDE	
PBDEs	BDE-17 BDE-28	BDE-47 BDE-49 BDE-66 BDE-71 BDE-77	BDE-85 BDE-99 BDE-100 BDE-119 BDE-126	Method 1614A Brominated Diphenyl
Polybrominated	HexaBDE	HeptaBDE	OctaBDE	Ethers in Water, Soil,
diphenyl ethers by HRGC/HRMS [†]	BDE-138 BDE-153 BDE-154 BDE-156	BDE-183 BDE-184 BDE-191	BDE-196 BDE-197	Sediment, and Tissue by HRGC/HRMS May 2010
	NonaBDE	DecaBDE		
	BDE-206 BDE-207	BDE-209		
	The detection limits and quantitation levels in this method are usually dependent on the level of interferences rather than instrumental limitations.			
	[†] Analysis subcontracted to Eurofins GfA Lab Service GmbH – Hamburg, Germany			

Analyte	Method	Reference Method
Inorganics		
Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	A portion of soil or water undergoes acidic digestion using either microwave or automated hot block. Analysis by ICP-AES or ICP-MS. (Eurofins in-house method ICP-AES LTM-MET-3030, ICP-MS LTM-MET-3040 LTM-GEN-7080 Moisture).	USEPA Method 6010D USEPA Method 3050B USEPA Method 3051A USEPA Method 6020B USEPA Method 3010A USEPA Method 3015A
Total Mercury (Hg)	A portion of soil or water undergoes acidic digestion using either microwave or automated hot block. Analysis by ICP/MS.(Eurofins in-house method LTM-MET-3030, LTM-GEN-7080 Moisture).	USEPA Method 6010D USEPA Method 3050B USEPA Method 3051A
Filtered Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	Filtered (0.45µm) and acidified in the field prior to analysis. Analysis by ICP-MS. (Eurofins in-house method LTM-MET-3040).	USEPA Method 6020B USEPA Method 3010A USEPA Method 3015A
Filtered Mercury (Hg)	Filtered, oxidation and final reduction. Analysis by FIMS. (Eurofins in-house method LTM-MET-3040).	USEPA Method 7471B USEPA Method 3010A USEPA Method 3015A
Water Laboratory		
Alkalinity	Alkalinity is a measure of the acid neutralising capacity of waters. It is a measure of how much acid (H+) is required to lower the pH to a specific level. In most waters, alkalinity is a function of the concentrations of carbonate [CO32-], bicarbonate [HCO3-] and hydroxyl [OH-] ions present. For this method it is assumed that other weak inorganic or organic acids, such as silicic, phosphoric and boric acids are absent. Measuring alkalinity is important in determining a stream's ability to neutralise acidic pollutants from rainfall or wastewater. Total alkalinity is affected by environmental factors; rain, acidic sanitisers, addition of fill water and other product applications can all change the alkalinity over time. Most alkalinity in surface water comes from calcium carbonate (CaCO3), being leached from rocks and soil. This process is enhanced if the rocks and soil have been broken up for any reason, such as mining or urban development. Alkalinity is significant in the treatment of wastewater and drinking water because it will influence treatment process such as anaerobic digestion. Water may be unsuitable for use in irrigation if the	APHA 2320 B.

Analyte	Method	Reference Method
	alkalinity level in the water is higher than the natural level of alkalinity in the soil.	
	This method covers the determination of alkalinity of all types of water. Alkaline ions present in the sample are neutralised by titration with a standard acid solution. Titration to different pH endpoints allows ion speciation to be determined. This method determines alkalinity relative to pre-designated endpoints measured by a pH meter. The end-points designated are pH 8.3 (Phenolphthalein Alkalinity) and pH 4.5 (Total Alkalinity). Titration by colour can also be used to analyse alkalinity, refer to APHA Method 2320 B (2.1) for details.	
	Alkalinity is expressed in terms of the amount of calcium carbonate that would need to be dissolved in fresh water to give the same alkalinity. Alkalinity is reported as mg CaCO3/L. The typical range of applicability is 20 – 4000 mg CaCO3/L. Range can be extended with smaller sample volume and/or alternate titrant concentration(s).	
Ammonia in Water	Alkaline phenol and hypochlorite react with ammonia to form indophenol blue that is proportional to the ammonia concentration. The blue colour is intensified with sodium nitroprusside. This method determines ammonia in drinking, surface, and saline waters; domestic and industrial wastes.	APHA 4500-NH3 B, C, D, F, H
Anions in Water	Bromide; bromate; chloride; chlorite; chlorate; fluoride; iodide; nitrate; nitrite; phosphate; sulfate by IC using in-house E045.1/ LM-LTM- INO-4300.	
Anions in Soils	Tests for water-soluble anions on milled air-dry sample are suitable for use on all soils in clarified/filtered1:5 soil/water extracts. Bromide; bromate; chloride; chlorite; chlorate; fluoride; iodide; nitrate; nitrite; phosphate; sulfate by IC using inhouse E045.1/ LM-LTM- INO-4300.	APHA 4110 B
Biochemical Oxygen Demand (5 days, 20°C)	The BOD test is an empirical bioassay-type test which measures the dissolved oxygen consumed by microbial life while assimilating and oxidising organic matter in a sample. A waste sample (or dilution) is incubated for five days 20°C in the dark. Dissolved oxygen is measured before and after incubation using a modified Winkler or oxygen probe method. The reduction in	АРНА 5210.

Analyte	Method	Reference Method
	dissolved oxygen during the incubation period yields a measure of BOD.	
Chemical Oxygen Demand (COD)	Most types of organic matter are oxidized by a boiling mixture of chromic and sulfuric acids. A sample is refluxed in strongly acid solution with a known excess of potassium dichromate (K ₂ Cr ₂ O ₇). After digestion, the remaining unreduced K ₂ Cr ₂ O ₇ is titrated with ferrous ammonium sulfate to determine the amount of K ₂ Cr ₂ O ₇ consumed and the oxidisable matter is calculated in terms of oxygen equivalent. Keep ratios of reagent weights, volumes, and strengths constant when sample volumes other than 50 mL are used. The standard 2-h reflux time may be reduced if it has been shown that a shorter period yields the same results. Some samples with very low COD or with highly heterogeneous solids content may need to be analysed in replicate to yield the most reliable data. Results are further enhanced by reacting a maximum quantity of dichromate, provided that some residual dichromate remains.	APHA 5220 C.
Chloride - 1:5 soil/water extract	Tests for water-soluble chloride (CI) on milled air-dry sample are suitable for use on all soils. For method 5A1, CI- in clarified 1:5 soil/water extracts is determined by potentiometric titration with AgNO3 in conjunction with an Ag/AgNO3 electrode array. For method 5A2a, CI- in clarified 1:5 soil/water extracts is determined by an automated, continuous flow colorimetric procedure based on the formation — in the presence of ferric ions and free thiocyanate ions — of highly coloured ferric thiocyanate in proportion to the CI-concentration. Method 5A2b is similar, except it pertains to the use of flow injection analysis (FIA). For 5A1 and 5A2 methods, it is assumed there are no chemical interferences of significance. Moreover, Method 5A2a has proven more precise than method 5A1, particularly at soil concentrations <50 mg Cl/kg. Other analytical finish options involve chemically-suppressed ion chromatography (5A3a), single-column electronically suppressed ion chromatography (5A3b), and direct measurement by ICPAES (Method 5A4). The methodology specifies reporting results on an air-dry basis.	APHA Method 4500-CI Rayment & Higginson 1992, "Australian Laboratory Handbook of Soil and Water Chemical. Methods". NEPM 2013 - Schedule B3 - Guideline on Laboratory Analysis of Potentially Contaminated Soil

Analyte	Method	Reference Method
Chromium - hexavalent	This procedure measures only hexavalent chromium, (Cr6+). The hexavalent chromium is determined colorimetrically by reaction with diphenylcarbazide in acid solution. A red-violet coloured complex of unknown composition is produced. The colorimetric method is useful for the determination of hexavalent chromium in a natural or treated water in the range from 0.005 to 1 mg/L. This range can be extended by appropriate sample dilution or concentration and/or use of longer cell paths. Normal level analyses in waters uses in-house LTM- INO-4100 Analysis of hexavalent chromium in water by discrete analyser.	APHA Standard Methods for the Examination of Water & Wastewater. 23 rd Edition 2017. 3500-Cr-B
Colour - Visual Comparison Method	Colour is determined by visual comparison of the sample with known concentrations of coloured solutions. Comparison also may be made with special, properly calibrated glass colour disks. The platinum-cobalt method of measuring colour is the standard method, the unit of colour being that produced by 1 mg platinum/L in the form of the chloroplatinate ion. The ratio of cobalt to platinum given (2120B.4) matches the colour of natural waters.	APHA 2120 B.
Cyanide	Free Cyanide (CN _F) Only hydrogen cyanide and the cyanide ion in solution can be classed as "free" cyanide. The proportions of HCN and CN-in solution are according to their equilibrium equation; this is influenced by the solution pH. Methods used to detect free cyanide should not alter the stability of weaker cyanide complexes, as they may otherwise be included in the free cyanide result. Methods used to detect free cyanide should be clear of interferences due to the presence of high concentrations of more stable cyanide complexes or other cyanide forms. If not, the interference must be quantified and allowed for in the result. Weak Acid Dissociable Cyanide (CN _{WAD}) Unlike the definition of "free cyanide" which identifies the specific cyanide species being measured, WAD cyanide refers to those cyanide species measured by specific analytical techniques. WAD cyanide includes those cyanide species	APHA 4500-CN B, C, D, E, I, N, O and USEPASW 846 9010, 9013, 9014, 9213.

Analyte	Method	Reference Method
	liberated at moderate pH of 4.5 such as HCN(aq) and CN-, the majority of Cu, Cd, Ni, Zn, Ag complexes and others with similar low dissociation constants. Methods used to measure WAD should be free from interferences due to the presence of high concentrations of more stable cyanide complexes or other cyanide forms. If not, the interference must be quantified and allowed for in the result.	
	Total Cyanide (CN _T)	
	This measurement of cyanide includes all free cyanide, all dissociable cyanide complexes and all strong metal cyanide including ferro-cyanide Fe(CN) ₆ ⁴ , ferricyanide Fe(CN) ₆ ³ , and portions of hexacyano cobaltate Co(CN) ₆ ³ , and those of gold and platinum. Only the related or derived compounds cyanate (CNO-) and thiocyanate (SCN-) are excluded from the definition of total cyanide.	
	Methods used to determine total cyanide must be shown to be capable of quantitatively determining all stable complexes of cyanide, including the cobalt cyanide complex. If methods determine other analytes as well (e.g. include SCN ⁻), those analytes need to be determined separately and allowed for in the total result. In-house method LTM-INO-4020 Total and Free plus Weak Acid Dissociable Cyanide by Continuous Flow Analysis	
Electrical Conductivity/Resis tivity	This in-house method will determine the concentration of ions in a soil-water suspension, expressed in µS/cm units. The conductivity is measured electrometrically at constant temperature (e.g. 25°C). E032.2 in soil type matrices by conductivity meter	NEPM Schedule B3
Ferrous (Fe ²⁺)	Iron is brought into solution, reduced to the ferrous state by boiling with acid and hydroxylamine, and treated with 1,10-phenanthroline at pH 3.2 to 3.3. Three molecules of phenanthroline chelate each atom of ferrous iron to form an orange-red complex. The coloured solution obeys Beer's law; its intensity is independent of pH from 3 to 9. A pH between 2.9 and 3.5 insures rapid colour development in the presence of an excess of phenanthroline. Colour standards are stable for at least 6	APHA 3500-Fe B Phenanthroline Method

Analyte	Method	Reference Method
	months. Ferrous iron by DA using in-house LTM-INO-4190.	
Fluoride in Water	Fluoride is determined potentiometrically using a fluoride electrode in conjunction with a standard single junction sleeve-type reference electrode and a pH meter having an expanded millivolt scale or a selective ion meter having a direct concentration scale for fluoride using APHA 4500-F C. This method determines fluoride in drinking, surface, and saline waters; domestic and industrial wastes.	АРНА 4500-F ⁻ С.
Fluoride in Soils	Total fluoride by combustion ion chromatography (CIC) using in-house LTM-INO-4150 (Part A)	ASTM D7359 Standard Test Method for Total Fluorine, Chlorine and Sulfur in Aromatic Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed by Ion Chromatography Detection (Combustion Ion Chromatography-CIC).
Methylene blue active substances (MBAS)	Methylene blue active substances (MBAS) bring about the transfer of methylene blue, a cationic dye, from an aqueous solution into an immiscible organic liquid upon equilibration. This occurs through ion pair formation by the MBAS anion and the methylene blue cation. The intensity of the resulting blue colour in the organic phase is a measure of MBAS. Anionic surfactants are among the most prominent of many substances, natural and synthetic, showing methylene blue activity. The MBAS method is useful for estimating the anionic surfactant content of waters and wastewaters, but the possible presence of other types of MBAS always must be kept in mind. This method is relatively simple and precise. It comprises three successive extractions from acid aqueous medium containing excess methylene blue into chloroform (CHCl3), followed by an aqueous backwash and measurement of the blue colour in the CHCl3 by spectrophotometry at 652 nm using inhouse LTM-INO-4030 MBAS as MW: 288 (filtered).	APHA 5540 C
Nitrite, Total Oxidised Nitrogen	A discrete analysis is a system of quantitative spectrophotometric	APHA 4500-NO ₃ -

Approved by: Dr. R. Symons Regional Technical Manager Issue Date: Wednesday, 13 January 2021 ©Eurofins2021

Analyte	Method	Reference Method
Analyte (NOx) and Nitrate with photometric detection using Discrete Analyser	determinations utilising automated analytical techniques to perform chemical reactions with high precision and reliability. The sample and the reagents are pipetted by the instrument into a cell and mixed before incubation. After incubation, the absorbance of the solution is measured at the wavelength applicable to the determination. Nitrite (NO₂) is determined through formation of a reddish purple azo dye produced at pH 2.0 to 2.5 by coupling diazotised sulfanilamide with N-(1-naphthyl)-ethylenediamine dihydrochloride (NED dihydrochloride). The colour system is measured at 540 nm. The applicable detection range of spectrophotometric measurements, as dictated by Beer's Law, is 10 to 1000 μg NO₂² N/L, with Method Detection Limits (MDL) and Limits of Reporting (LOR) determined within this range. See method validation for detail. Higher concentrations can be determined by diluting the sample. Total Oxidised Nitrogen (NOx) Nitrate (NO₃¹) is reduced to nitrite (NO₂¹) by vanadium chloride. The total nitrite ions (Total Oxidised Nitrogen, TON, NOx) are then reacted with sulphanilamide and NED dihydrochloride under acidic conditions to form a pink azo-dye. The absorbance is measured at 540 nm and is related to the NOx concentration by means of a calibration curve. Higher concentrations can be determined by diluting the sample. Nitrate concentration is a result of the calculation of NOX concentration minus nitrite concentration noting the need for standardised units (i.e. mg N/L, or "as N"). Nitrogen-nitrate, nitrite, oxides of nitrogen, total by DA using in-house LTM-INO-4350	Reference Method
Oil and Grease	This method is for determination of n-hexane extractable material (HEM; oil and grease) and n-hexane extractable material that is not adsorbed by silica gel (SGT-HEM; non-polar material) in surface and saline waters and industrial and domestic aqueous wastes. Extractable materials that may be determined are relatively non-volatile hydrocarbons, vegetable oils, animal fats, waxes, soaps, greases, and	USEPA Method 1664, Revision A n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT- HEM; Non-polar Material)

Analyte	Method	Reference Method
	related materials. The method is based on prior United States Environmental Protection Agency (US EPA) methods for determination of "oil and grease" and "total petroleum hydrocarbons". The term "nhexane extractable material" reflects that this method can used to determine materials other than oils and greases. Similarly, the term "silica gel treated nhexane extractable material" reflects that this method can be used to determine material that is not adsorbed by silica gel (non-polar material). This method is not applicable to measurement of materials that volatilise at temperatures below approximately 85°C. Petroleum fuels from gasoline through #2 fuel oil may be partially lost in the solvent removal operation. Some crude oils and heavy fuel oils contain a significant percentage of materials that are not soluble in n-hexane. Accordingly, recoveries of these materials may be low. This method is capable of measuring HEM and SGT-HEM in the range of 10 to 1000 mg/L, and may be extended to higher levels by analysis of a smaller sample volume collected separately.	by Extraction and Gravimetry
% Organic Matter	Gravimetric determination based on ashing at >600 °C	NEPM Schedule B3
pH in Soils (1:5 aqueous extract) pH in Soils (1:5 CaCl ₂ extract)	This in-house method will determine the concentration of hydrogen ions (H+) in a soil-water or soil-calcium chloride suspension, expressed in pH units. The pH is measured electrometrically at constant temperature (e.g. 25°C). LTM-GEN-7090_R0 pH electrometric measurement in water & soil-type matrices by ISE.	NEPM Schedule B3
Phosphorus	Phosphorus analyses embody two general procedural steps: (a) conversion of the phosphorus form of interest to dissolved orthophosphate, and (b) colorimetric determination of dissolved orthophosphate. The separation of phosphorus into its various forms is defined analytically but the analytical differentiations have been selected so that they may be used for interpretive purposes. Filtration through a 0.45-µm-pore-diam membrane filter separates dissolved from suspended forms of phosphorus. No claim	APHA 4500 P.

Analyte	Method	Reference Method
Analyte	is made that filtration through 0.45-µm filters is a true separation of suspended and dissolved forms of phosphorus; it is merely a convenient and replicable analytical technique designed to make a gross separation. Pre-filtration through a glass fibre filter may be used to increase the filtration rate. Phosphates that respond to colorimetric tests without preliminary hydrolysis or oxidative digestion of the sample are termed "reactive phosphorus." While reactive phosphorus is largely a measure of orthophosphate, a small fraction of any condensed phosphate present usually is hydrolysed unavoidably in the procedure. Reactive phosphorus occurs in both dissolved and suspended forms. Acid hydrolysis at boiling-water temperature converts dissolved and particulate condensed phosphates to dissolved orthophosphate. The hydrolysis unavoidably releases some phosphate from organic compounds, but this may be reduced to a minimum by judicious selection of acid strength and hydrolysis time and temperature. The term "acid-hydrolysable phosphorus" is preferred over "condensed phosphate" for this fraction. The phosphate fractions that are converted to orthophosphate only by oxidation destruction of the organic matter present are considered "organic" or "organically bound" phosphorus. The severity of the oxidation required for this conversion depends on the form—and to some extent on the amount—of the organic phosphorus present. Like reactive phosphorus and acid-hydrolysable phosphorus, organic phosphorus occurs both in the dissolved and suspended fractions. The total phosphorus as well as the dissolved and suspended phosphorus fractions each may be divided analytically into the three chemical types that have been described: reactive, acid hydrolysable, and organic phosphorus. As indicated, determinations usually are conducted only on the unfiltered and filtered samples. Suspended fractions	Reference Method
	indicated, determinations usually are	

Analyte	Method	Reference Method
Sulfate (as SO ₄ ²⁻)	Sulfate ion (SO ₄ ²⁻) is precipitated in an acetic acid medium with barium chloride (BaCl ₂) so as to form barium sulfate (BaSO ₄) crystals of uniform size. Light absorbance of the BaSO ₄ suspension is measured by a photometer and the SO ₄ ²⁻ concentration is determined by comparison of the reading with a standard curve using in-house LTM-INO-4110 Sulfate by Discrete Analyser	APHA 4500- SO ₄ ²⁻ E. Turbidimetric Method*
Total Organic Carbon in Water	Total Carbon (TC) is measured by injecting a portion of the water sample into a heated combustion tube packed with an oxidation catalyst. The water is vaporised and TC, the organic carbon and the inorganic carbon, is converted to carbon dioxide (CO2). The carbon dioxide is carried with the carrier gas stream from the combustion tube to a NDIR (non-dispersive infrared gas analyser) and concentration of carbon dioxide is measured. The TC concentration of the sample is obtained by using the calibration curve prepared with standard solutions. Inorganic Carbon (IC) is measured by injecting a portion of the sample into an IC reaction chamber filled with phosphoric acid solution. All IC is converted to carbon dioxide and concentration of carbon dioxide and concentration of carbon dioxide is measured with a NDIR. TOC may be obtained as the difference of TC and IC.	APHA 5310 B
Total Dissolved Solids (TDS) Dried at 180°C	A well-mixed sample is filtered through a standard glass fibre filter. The filtrate is evaporated and dried to constant weight at 180°C. This method determines filterable residue in drinking, surface, and saline waters; domestic and industrial wastes. (A) Mineral Waters: Highly mineralized waters containing significant concentrations of calcium, magnesium, chloride and/or sulfate may be hygroscopic and will require prolonged drying, desiccation and rapid weighing. (B) Bicarbonate: Samples containing high concentrations of bicarbonate will require careful and possibly prolonged drying at 180oC to insure that all the bicarbonate is converted to carbonate. (C) High Residue Levels: Too much residue in the evaporating dish will crust over and entrap water that will not be	APHA 2540 C.

Approved by: Dr. R. Symons Regional Technical Manager Issue Date: Wednesday, 13 January 2021 Eurofins Environment Testing Australia Pty Ltd

Analyte	Method	Reference Method	
	driven off during drying. Total residue should be limited to about 200 mg. inhouse method LTM-INO-4170.		
Total Suspended Solids (TSS) Dried at 103–105°C	Suspended solids are those that are retained on a glass-fibre filter. The unfiltered sample is mixed thoroughly and an appropriate volume is rapidly poured into a graduated cylinder. The suspended solids are collected on a glass fibre filter, and the insoluble residue is dried at 104 ± 1°C and weighed. This method may be used to determine the suspended-solids concentration of any natural or treated water or industrial waste. In-house method LTM-INO-4070	APHA 2540 D.	
Fixed and Volatile Solids Ignited at 550°C	The residue from LTM-INO-4070 or LTM-INO-4170 is ignited to constant weight at 550°C. The remaining solids represent the fixed total, dissolved, or suspended solids while the weight lost on ignition is the volatile solids. The determination is useful in control of wastewater treatment plant operation because it offers a rough approximation of the amount of organic matter present in the solid fraction of wastewater, activated sludge, and industrial wastes.	APHA 2540 E.	
Residue, Volatile (Gravimetric, Ignition at 550°C)	The residue obtained from the determination of total, filterable or non-filterable residue is ignited at 550°C in a muffle furnace. The loss of weight on ignition is reported as mg/L volatile residue. This method determines the weight of solid material combustible at 550°C. The test is useful in obtaining a rough approximation of the amount of organic matter present in the solid fraction of sewage, activated sludge, industrial wastes, or bottom sediments.	APHA 2540 E.	
General			
Cation exchange capacity (CEC)	Cation exchange capacity (CEC) is a measure of the soil's ability to hold positively charged ions. It is a very important soil property influencing soil structure stability, nutrient availability, soil pH and the soil's reaction to fertilisers and other ameliorants (Hazleton and Murphy 2007). The clay mineral and organic matter components of soil have negatively charged sites on their surfaces which	NEPM Schedule B3	

Analyte	Method	Reference Method
	adsorb and hold positively charged ions (cations) by electrostatic force. This electrical charge is critical to the supply of nutrients to plants because many nutrients exist as cations (e.g. magnesium, potassium and calcium). In general terms, soils with large quantities of negative charge are more fertile because they retain more cations (McKenzie et al. 2004) however, productive crops and pastures can be grown on low CEC soils. The main ions associated with CEC in soils are the exchangeable cations calcium (Ca²+), magnesium (Mg²+), sodium (Na+) and potassium (K+) (Rayment and Higginson 1992), and are generally referred to as the base cations. In most cases, summing the analysed base cations gives an adequate measure of CEC ("CEC by bases"). However, as soils become more acidic these cations are replaced by H+, Al³+ and Mn²+, and common methods will produce CEC values much higher than what occurs in the field (McKenzie et al. 2004). NOTE: Only CEC & ESP are calculated by this method. Conducted by in-house Method LTM-MET-3060 – Cation Exchange Capacity (CEC) by bases & Exchangeable Sodium Percentage (ESP).	
Clay Content	This method is based on the Soil Classification assessment by Hydrometer outlined in the Australian Standard 1289.3.6.3 (Determination of the particle size distribution of a soil – Standard method of fine analysis using a hydrometer). This method quantitatively determines the physical proportions of three sizes of primary soil particles, by determining their settling rates in an aqueous solution using a hydrometer. The three categories of particles measured are defined as follows:- 1. Sand Ranges from 2000 to 50µm 2. Silt Ranges from 50-2µm 3. Clay Less than 2µm Settling rates of primary soil particles are measured using a hydrometer.	AS1289.3.6.3
Moisture	Gravimetric determination based on drying at 103-105 °C. MOISTURE CONTENT IN SOIL OR OTHER SOLID MATRICES BY GRAVIMETRY LTM-GEN-7080 Moisture.	NEPM Schedule B3

Analyte	Method	Reference Method
Leaching Procedures	This in-house method is for the preparation of leachates collected from soil, sediments, sludges, and other solid matrices using a rotary vessel extraction procedure. The method allows for the substitution of laboratory grade de-ionised water, EP or SPLP fluids, or site water supplied by the client as the extraction fluid. The solid portion of the sample is reduced in particle size, if necessary, and leached by rotary vessel agitation with a selected leaching fluid. The sample leachate is then extracted/ analysed by an additional test method, as per client request. (Eurofins inhouse method LEACHING PROCEDURE FOR VOLATILE AND NON-VOLATILE ANALYTES FROM SOILS AND SOLID WASTES LTM-GEN-7010.	Toxicity Characteristic Leaching Procedure (TCLP) USEPA Method 1311 Australian Standard Leaching Procedure (ASLP) AS 4439.2: 2019; AS4439.3: 2019
LEAF 1313	Liquid –Solid Partitioning as a Function of Extract pH for Constituents in Solid Materials using a Parallel Batch Extraction Procedure. Nine (9) Parallel extractions of a particle sized reduced solid material in dilute acid or base and reagent water. Series of eluates having pH values ranging from 2-13. Liquid solid ratio of 10:1. Eluate is centrifuged and filtered for COPCs. Designed to provide aqueous extracts representing the liquid-solid portioning [LSP] curve as a function of pH for inorganics and non-volatile organics in solid materials	EPA SW-846 Method 1313
LEAF 1314	Liquid –Solid Partitioning as a Function of Liquid-Solid Ration for Constituents in Solid Materials using an Up-Flow Percolation Column Procedure Eluent is introduced into a column with packed particle sized reduced solid material in an up-flow pumping mode. Flow rate is maintained between 0.5-1.0 LS/Day. Eluent is collected at predetermined times, filtered and analysed for COPCs. Total time of test is approximately 14 days. Designed to provide the liquid – solid portioning [LSP] of inorganic constituents and non-volatile organics in granular solid material as a function of liquid to solid [LS] ratio under percolation conditions.	EPA SW-846 Method 1314

Analyte	Method	Reference Method
LEAF 1315	Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials using a Semi-dynamic Tank Leaching Procedure. Leaching of continuously water saturated monolithic or compacted granular material in an eluent-filled tank with periodic renewal of the leaching solution. LS ratio of 9 mL eluent per cm2 of surface area. Eluent is collected at predetermined times and analysed for COPCs. Eluate is centrifuged and filtered for COPCs. Total time of test is 63 days. Designed to provide the mass transfer [release rates] of inorganic analytes contained in a monolith or compacted granular material. Under diffusion controlled release conditions, as a function of leaching time.	EPA SW-846 Method 1315
LEAF 1315	Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials using a Semi-dynamic Tank Leaching Procedure. Leaching of continuously water saturated monolithic or compacted granular material in an eluent-filled tank with periodic renewal of the leaching solution. LS ratio of 9 mL eluent per cm² of surface area. Eluent is collected at predetermined times and analysed for COPCs. Eluate is centrifuged and filtered for COPCs. Total time of test is 63 days. Designed to provide the mass transfer [release rates] of inorganic analytes contained in a monolith or compacted granular material. Under diffusion controlled release conditions, as a function of leaching time.	EPA SW-846 Method 1315
LEAF 1316	Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio for Constituents in Solid Materials using a Parallel Batch Extraction Procedure. Five (5) Parallel extractions of a particlesize reduced solid material in reagent water over a range of L/S values from 0.5 to 10 mL eluant/g dry material. Depending on particle size, sample is tumbled between 24 and 72 hours. Eluate is centrifuged and filtered for COPCs. Designed to provide the liquid-solid portioning{LSP] of inorganic and non-	EPA SW-846 Method 1316

Analyte	Method	Reference Method
	volatile organics at the natural pH of the solid material as a function of liquid to solid ratio [L/S] under conditions that approach liquid-solid chemical equilibrium.	
Asbestos		
Asbestos in Soils	The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis in accordance with AS 4964-2004.	AS 4964–2004
	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores	
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding 400 ± 30°C. The resultant material is then ground and examined in accordance with AS 4964-2004.and ores	AS 4964–2004
Asbestos fibres in Air	Conducted in accordance with the National Occupational Health & Safety Commission - Guidance Note on The Membrane Filter Method For Estimating Airborne Asbestos Fibres 2 nd Edition [NOHSC:3003(2005)] and in-house Method LTM-ASB-8010.	NOHSC:3003(2005)
Air		

Analyte	Method	Reference Method
Filters - Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	The filter is digested in a hot block set to 95°C for 2.5 hours using an extraction fluid containing hydrochloric acid (HCI) and nitric acid (HNO ₃). Two aliquots of hydrogen peroxide (H ₂ O ₂) are added after 1.5 hours and 2.0 hours of extraction and are allowed to effervesce. After extraction, the samples are filtered and diluted to a final volume of 50 mL. The extract is analysed by ICP-MS and the data are collected using the manufacturer's software.	EQL-0512-201 - US Environmental Protection Agency
Method for Isolation, Enumeration and Confirmation of Sulfite Reducing Clostridia and Clostridium perfringens from Raw, Potable, Process and Recreational Waters by Membrane Filtration	Tests for sulfite-reducing clostridia play only a subsidiary role in water examination. The organisms form spores which are environmentally resistant and their presence may indicate soil contamination, although some species may grow in deposits, and be associated with corrosion of distribution pipes. Clostridium perfringens is a sulfite-reducing species and is associated with faecal contamination. The method involves a volume of sample that is filtered and the membrane filter placed on the surface of an agar medium containing sulfite, iron(III) and D-cycloserine (which inhibits other bacteria and reduces the size of colonies that develop). The agar medium is then incubated under anaerobic conditions at 37 °C. Sulfite-reducing clostridia usually produce black colonies as a result of the reduction of sulfite to sulfide, which then reacts with the iron(III) salt. If only a spore count is required then the sample is heat-treated at 60 °C prior to filtration in order to kill vegetative bacteria. In-house method Sulfite-Reducing Clostridia - Membrane Filtration Method: LTM-MIC-6617	UK Environment Agency, The Microbiology of Drinking Water (2010), Part 6 – Methods for the isolation and enumeration of sulphite-reducing clostridia and <i>Clostridium perfringens</i> by membrane filtration.
Detection of Male- specific & Somatic Coliphages in Water	Method uses the single agar layer (SAL) procedure. A 100-mL ground water sample is assayed by adding MgCl ₂ (magnesium chloride), log-phase host bacteria (E. coli F _{amp} for F+ coliphage and E. coli CN-13 for somatic coliphage), and 100 mL of double-strength molten tryptic soy agar to the	USEPA Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure April 2001

Analyte	Method	Reference Method
sample. The sample is thoroughly mixed and the total volume is poured into 5 to 10 plates (dependent on plate size). After an overnight incubation, circular lysis zones (plaques) are counted and summed for all plates from a single sample. The quantity of coliphage in a sample is expressed as plaque forming units (PFU) / 100 mL. For quality control purposes, both a coliphage positive reagent water sample and a negative reagent water sample (method blank) are analysed for each type of coliphage with each sample batch.		
Air Toxics Labora		
TRH by Modified US EPA TO-15*	The laboratory performed analysis following modified EPA TO-15 for Total Recoverable Hydrocarbon (TRH) fractions using electron ionisation GC/MS in full scan mode. The method involves concentrating up to 0.2 litres of air. The concentrated aliquot is then flash vaporised and swept through a water management system to remove water vapour. Following dehumidification, the sample passes directly into the GC-MS for analysis. All sample-related peaks including BTEX and naphthalene eluting within their respective carbon range are included in the TRH result. The >C6-C10 TRH range is defined as the total ion area of peaks eluting after n-Hexane and including n-Decane referenced to the response factor of Toluene. The >C10-C12 TRH range is defined as the total area of peaks eluting after n-Decane and including n-Dodecane and reference to the response factor of n-Decane. Hydrocarbons heavier than C12 do not reliably recover from summa canisters due to their low vapour pressure. As a result, the reported range was limited to C12 rather than C16 as defined in Table C1 ¹ . If requested, the fraction >C6-C10 minus BTEX (F1) and >C10-C12 minus naphthalene (modified F2) were reported following the definition listed in the previous paragraph except BTEX and	USEPA Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)

¹ CRC CARE 2013, Petroleum hydrocarbon vapour intrusion assessment: Australian guidance, CRC CARE Technical Report no. 23, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Issue Date: Wednesday, 13 January 2021

Analyte	Alyte Method Reference Method	
	naphthalene peaks were removed from the total ion peak area. Naphthalene elutes outside the >C10-C12 range on the system used for sample analysis. As a result, >C10-C12 TRH value is equivalent to the modified F2 value. The laboratory performed analysis via EPA	
Modified US EPA TO-15 & VPH Fractions*	Method TO-15 and Eurofins Air Toxics VPH (Volatile Petroleum Hydrocarbon) methods for the Determination of VPH Fractions using GC/MS in the full scan mode. The method involves concentrating up to 0.5 litres of air. The concentrated aliquot is then flash vaporised and swept through a water management system to remove water vapour. Following dehumidification, the sample passes directly into the GC/MS for analysis. This method is designed to measure gaseous phase aliphatic and aromatic compounds in ambient air and soil gas collected in stainless steel Summa canisters. Eurofins Air Toxics VPH method is a hybrid of EPA TO-15 method viz chromatographic peaks were identified via mass spectrum as either aliphatic or aromatic petroleum hydrocarbons and included in the appropriate range as defined by the method. The volatile Aliphatic hydrocarbons are collectively quantified within the C5 to C6 range, C6 to C8 range, C8 to C10 range and the C10 to C12 range. Additionally, the volatile Aromatic hydrocarbons are collectively quantified within the C8 to C10 range and the C10 to C12 range. The Aromatic ranges refer to the equivalent carbon (EC) ranges. (Please note that benzene constitutes the >C5-C7 aromatic range and toluene constitutes the >C7-C8 aromatic range. Benzene and toluene concentrations are reported on the TO-15 workorder fraction.) Aliphatic data is calculated from the Total Ion Chromatogram (TIC) which has been reprocessed in a duplicate file differentiated from the original by the addition of an alphanumeric extension. The Aromatic calculation also uses the information contained in the associated extracted ion file.	USEPA Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)
Modified Natural Gas Analysis by ASTM D-1946*	The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using	ASTM D1946-77

Analyte	Method			Reference Method
	GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample. On the analytical column employed for this analysis, Oxygen co-elutes with Argon. The corresponding peak is quantitated as Oxygen.			Standard Method for Analysis of Reformed Gas by Gas Chromatography
Analysis of volatile and semivolatile organic compounds in vapor by thermal desorption GC/MS full scan using modified EPA method TO-17, SOP#109	The laboratory performed analysis via The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection. A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport. Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may override		Modified EPA Method TO- 17 (VI Tubes)*	
	Requirement	TO-17	Eurofins Air Toxics Modifications	
	Initial Calibration	%RSD ≤ 30% with 2 allowed out up to 40%	VOC list: %RSD ≤ 30% with 2 allowed out up to 40%	
	SVOC list: %RSD =30<br % with 2 allowed out up to 40%			
	Daily Calibration	%D for each target compound within ± 30%.	Fluorene, Phenanthrene, Anthracene, Fluoranthene,	

Analyte	Method			Reference Method
			and Pyrene within ± 40%D	
	Audit Accuracy	70-130%	Second source recovery limits for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene = 60-140%.	
	Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterised or performance previously verified, single tube sampling may be appropriate. Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.	
	Analytical Precision	≤ 20% RPD	≤ 30% RPD for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene.	
	Code RAD130 cartridge is a stainless steel net cylinder, with 100 mesh grid opening and 5.8 mm diameter, packed with 530 ± 30 mg of activated charcoal, particle size is 35-50 mesh. Volatile organic compounds are trapped by adsorption and recovered by carbon disulfide desorption, analysis is performed by GC-MS.			
Volatile organic compounds (VOCs) - chemically	white diffusive code RAD120	•		Passive Sampler – radiello® User Manual 2019
desorbed with CS ₂	supporting pla RAD121	ate code	9	
	vertical adapte RAD122 (opti			
	Chemi-adsorb cartridge code RAD130	oing e		

Analyte	Method	Reference Method
	Extraction: A volume of 2.0 ml of CS ₂ and 100 µL of internal standard solution is added directly in the radiello glass tube. The tube is shaken gently for 30 minutes.	
	Sampling rates varies from the value at 298 K on the effect of temperature (in Kelvin) as expressed by the following equation:	
	$Q_K = Q_{298}(\frac{K}{298})$	
	where Q _K is the sampling rate at the temperature K and Q ₂₉₈ is the reference value at 298 K. This produces a variation of ±5% for 10 °C variation (upwards or downwards) from 25 °C.	
	Sampling rate is invariant with humidity in the range 15 - 90% and with wind speed between 0.1 and 10 m.s ⁻¹ . NOTE: where uptake rates (Q _K) are unpublished then they have been estimated from like compounds. Results for these compounds are semi-quantitative.	
	Average concentration (in µg.m ⁻³) over the whole exposure time is calculated according to the following expression:	
	$C (\mu g. m^{-3}) = \frac{m (\mu g)}{Q_K (mL. min^{-1}). t(min)}. 10^6$	
	m = mass of analyte in μg determined by GC-MS	
	t = exposure time in minutes	
Volatile organic	Code RAD145 is a stainless steel net cylinder, with 3 x 8 µm mesh opening and 4.8 mm diameter, packed with 350 ± 10 mg of graphitised charcoal (Carbograph 4), particle size is 35-50 mesh.	
compounds (VOCs) - thermally desorbed	Volatile organic compounds are trapped by adsorption and recovered by thermal desorption, analysis is performed by GC-MS.	Passive Sampler – radiello® User Manual 2019
	yellow diffusive body code RAD1202	

Analyte	Method	Reference Method
	supporting plate code RAD121	
	vertical adapter code RAD122 (optional)	
	Chemi-adsorbing cartridge code RAD145	
	Code RAD145 cartridge has been dimensioned to fit the diameter of the Markes Unity thermal desorption system that is used in conjunction with an Agilent GC-MS.	
	Sampling rates varies from the value at 298 K on the effect of temperature (in Kelvin) as expressed by the following equation:	
	$Q_K = Q_{298}(\frac{K}{298})$	
	where Q _K is the sampling rate at the temperature K and Q ₂₉₈ is the reference value at 298 K. This produces a variation of ±5% for 10 °C variation (upwards or downwards) from 25 °C.	
	Sampling rate is invariant with humidity in the range 15 - 90% and with wind speed between 0.1 and 10 m.s ⁻¹ . Do not expose directly radiello to rain: even if small amounts of water are adsorbed by Carbograph 4, they can nevertheless interfere with analysis. NOTE: where uptake rates (Q _K) are unpublished then they have been estimated from like compounds. Results for these compounds are semi-quantitative.	
	Average concentration (in µg.m ⁻³) over the whole exposure time is calculated according to the following expression:	
	$C (\mu g. m^{-3}) = \frac{m (\mu g)}{Q_K (mL. min^{-1}). t(min)}. 10^6$	
	m = mass of analyte in μg determined by GC-MS	
	t = exposure time in minutes	

Analyte	Method	Reference Method
Volatile organic compounds (VOCs) – passive samplers	Companion EPA Methods 325A (Sampler Deployment and VOC Sample Collection) and 325B (Sampler Preparation and Laboratory Analysis) select benzene as the representative compound to evaluate the overall emissions from refineries. Passive sampling onto sorbent tubes followed by Thermal Desorption-Gas-Chromatography/Mass Spectrometry (TD-GC/MS) analysis has been established as the standard air monitoring technology for the EPA's new rule. Passive sampling tube shelter assemblies will be hung at various locations along the fence line/property boundary surrounding refineries. After two weeks (14 days) passive sampling tubes can be detached from their shelters, re-sealed and sent to a laboratory equipped with TD-GC/MS for analysis. Per EPA Method 325, all tubes must be replaced with freshly conditioned and qualified sampling tubes every 14 days to ensure continuous monitoring. The methods provide a low cost alternative to screen fugitive or area emissions as compared to active sampling methods that involve pumped sorbent tubes or time weighted average canister sampling. While the rule is currently limited to the monitoring of benzene, Method 325 can also be extended to include other compounds of concern at ambient monitoring sites. Additional target VOCs include 1,3-Butadiene, Toluene, Ethyl Benzene, and Xylenes as well as other chemicals for which diffusive sampling rates have been determined. Reporting limits less than 1 μg/m³ can be easily achieved over a 7-day period. Extending the sampling period to 14 days translates to reporting limits less than 0.5 μg/m³.	US EPAMethod 325B— Volatile Organic Compounds from Fugitive and Area Sources: Sampler Preparation and Analysis

Table 3: PFAS LORs - Water, Soil/Sediments & Biotic Matrices

Per- and Polyfluoroalkyl Substances (PFASs)	CAS No.ª	MW	(Potabl	WATER (Potable, surface, groundwater, saline		LIDS ent, biosolids)	BIOTA*			
i di ana i dignadi daningi dazdiandod (i i i ide)	CAG NO.		LOR (µg/L)	LOR Trace (µg/L)	LOR (µg/kg)	LOR Trace (µg/kg)	Type 1 LOR (ng/mL)	Type 2 LOR (μg/kg)	Type 3 LOR (μg/kg)	Type 2 Trace LOR (μg/kg)
Perfluoroalkyl carboxylic acids (PFCAs)										
Perfluorobutanoic acid (PFBA)	375-22-4	214.04	0.05	0.005	5	0.1	0.5	0.5	1	0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	264.05	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorohexanoic acid (PFHxA)	307-24-4	314.05	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluoroheptanoic acid (PFHpA)	375-85-9	364.06	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorooctanoic acid (PFOA)	335-67-1	414.07	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorononanoic acid (PFNA)	375-95-1	464.08	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorodecanoic acid (PFDA)	335-76-2	514.08	0.01	0.001	5	0.1	0.5	0.5	1	0.5
Perfluoroundecanoic acid (PFUnA)	2058-94-8	564.09	0.01	0.001	5	0.1	0.5	0.5	1	0.5
Perfluorododecanoic acid (PFDoA)	307-55-1	614.10	0.01	0.001	5	0.1	0.5	0.5	1	0.5
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	664.11	0.01	0.001	5	0.1	0.5	0.5	1	0.5
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	714.11	0.01	0.001	5	0.1	0.5	0.5	1	0.5
Perfluoroalkyl sulfonic acids (PFSAs)										
Perfluoropropanesulfonic acid (PFPrS)	423-41-6	250.09	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorobutanesulfonic acid (PFBS)	375-73-5	300.10	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	350.11	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorohexane sulfonate (PFHxS)	355-46-4	400.11	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Potassium perfluorohexanesulfonate (linear and branched isomers) (br-PFHxS)			0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluoroheptane sulfonate (PFHpS)	375-92-8	450.12	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorooctane sulfonic acid (PFOS) ^g ,h	1763-23-1	500.13	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Potassium perfluorooctanesulfonate (linear and branched isomers) (br-PFOS)			0.01	0.001	5	0.1	0.5	0.5	1	0.1

Issue Date: Wednesday, 13 January 2021

nuary 2021 Approved by: Dr. R. Symons Regional Technical Manager Eurofins Environment Testing Australia Pty Ltd

Page 38 of 41

ABN 50 005 085 521

Dog and Baltifly and Hard Cale of the Control (BEACA)	CAS No.a		WATER (Potable, surface, groundwater, saline		SOLIDS (Soil, sediment, biosolids)		BIOTA*			
Per- and Polyfluoroalkyl Substances (PFASs)	CAS NO.ª	MW	LOR (µg/L)	LOR Trace (µg/L)	LOR (µg/kg)	LOR Trace (µg/kg)	Type 1 LOR (ng/mL)	Type 2 LOR (μg/kg)	Type 3 LOR (μg/kg)	Type 2 Trace LOR (µg/kg)
Perfluorononanesulfonic acid (PFNS)	<u>68259-12-1</u>	550.13	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluorodecanesulfonic acid (PFDS)	67906-42-7	617.18	0.01	0.001	5	0.1	0.5	0.5	1	0.1
Perfluoroalkane sulfonamides (FASAs), Perfluoroalkane s (FASAAs) and N-alkyl perfluoroalkane sulfonamido acetic				/l perfluoroalka	ne sulfonamid	o ethanols (Mel	FASEs, EtFASEs)	Perfluoroalkane s	sulfonamido ad	etic acids
Perfluorooctane sulfonamide (FOSA)	754-91-6	499.14	0.05	0.005	10	1	5	0.5	5	0.5
N-Methylperfluorooctane sulfonamide (MeFOSA)	31506-32-8	513.17	0.05	0.005	10	1	5	0.5	5	0.5
N-Ethylperfluorooctane sulfonamide (EtFOSA)	4151-50-2	527.19	0.05	0.005	10	1	5	2	5	0.5
N-Methylperfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	557.22	0.05	0.005	10	1	5	1	5	0.5
N-Ethylperfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	571.25	0.05	0.005	10	1	5	1	5	0.5
N-Ethylperfluorooctanesulfonamido acetic acid (EtFOSAA)	2991-50-6	585.23	0.05	0.005	10	1	5	0.5	5	0.5
N-Methylperfluorooctanesulfonamido acetic acid (N-MeFOSAA)	2355-31-9	571.21	0.05	0.005	10	1	5	0.5	5	0.5
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)										
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2 FTSA)	757124-72-4	328.15	0.01	0.001	5	0.5	5	0.5	5	0.1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2 FTSA)	27619-97-2	428.16	0.01	0.001	5	0.5	5	0.5	5	0.1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2 FTSA)	39108-34-4	528.18	0.01	0.001	5	0.5	5	1	5	0.1
1H, 1H, 2H, 2H-perfluorododecane sulfonate (10:2 FTSA)	120226-60-0	628.20	0.01	0.001	5	0.5	5	1	5	0.5
Additional PFAS Compounds										
Hexafluoropropylene oxide dimer acid (HFPO-DA) [GenX)	13252-13-6 ^b	285 ^f	0.01		5					
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS) [11Cl-F53B]	763051-92-9°	631	0.01		5					
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF ₃ ONS) [9Cl-F53B]	756426-58-1 ^d	531	0.01		5					
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4 ^e	377	0.01		5					

Issue Date: Wednesday, 13 January 2021

nuary 2021 Approved by: Dr. R. Symons Regional Technical Manager Eurofins Environment Testing Australia Pty Ltd

Page 39 of 41

ABN 50 005 085 521

Per- and Polyfluoroalkyl Substances (PFASs)	CAS No.a	MW	WATER (Potable, surface, groundwater, saline		SOLIDS (Soil, sediment, biosolids)		BIOTA*			
	CAS NU.		LOR (µg/L)	LOR Trace (µg/L)	LOR (µg/kg)	LOR Trace (µg/kg)	Type 1 LOR (ng/mL)	Type 2 LOR (μg/kg)	Type 3 LOR (μg/kg)	Type 2 Trace LOR (µg/kg)
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	<u>151772-58-6</u>	296.045	0.01		5					
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	113507-82-7	316.09	0.01		5					
Perfluoro-3-methoxypropanoic acid (PFMPA)	<u>377-73-1</u>	230.038	0.01		5					
Perfluoro-4-methoxybutanoic acid (PFMBA)	863090-89-5	280.046	0.01		5					
6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) ⁱ	34455-29-3	570.37	0.01		5					
3:3 Fluorotelomercarboxylic acid (3:3 FTCA)	<u>356-02-5</u>	242.093	0.01		5					
5:3 Fluorotelomer carboxylic acid (5:3 FTCA)	914637-49-3	342.108	0.01		5					
Perfluoropropane sulfonic acid (PFPrS)	423-41-6	248.90	0.01		5					
Perfluoroethylcyclohexane sulfonate (PFECHS)	67584-42-3	500.22	0.01		5					

^a Some PFAS are commercially available as ammonium, sodium and potassium salts. This method measures all forms of the analytes as anions while the counterion is inconsequential. Analytes may be purchased as acids or as any of the corresponding salts (see Section 7.2.3 regarding correcting the analyte concentration for the salt content).

BIOTA Kev

Type 1 - Human and Animal Blood (whole blood & plasma)

Type 2 - Citrus, tomato, zucchini, grasses, squash; muscle tissue of fish, crustaceans, cheese, cow, sheep; kidney tissue of sheep and cow; milk and chicken egg

Type 3 - Sheep and cow liver; olives and avocado

Issue Date: Wednesday, 13 January 2021 Approved by: Dr. R. Symons Regional Technical Manager Eurofins Environment Testing Australia Pty Ltd

^b HFPO-DA is one component of the GenX processing aid technology.

^c 11CI-PF₃OUdS is available in salt form (e.g. CASRN of potassium salt is 83329-89-9).

d 9CI-PF₃ONS analyte is available in salt form (e.g. CASRN of potassium salt is 73606-19-6)

e ADONA is available as the sodium salt (no CASRN) and the ammonium salt (CASRN is 958445-448).

^fHFPO-DA is not stable in the ESI source and the [M-H]- is not observed under typical ESI conditions. The precursor ion used during method development was [M-CO2]-.

⁹ Analyte has multiple resolved chromatographic peaks due to linear and branched isomers. All peaks summed for quantitation purposes.

^h To reduce bias regarding detection of branched and linear isomers, the m/z 80 product ion must be used for this analyte.

¹ NICNAS 6:2 Fluorotelomer sulfonamide surfactants: Environment tier II assessment 12 December 2019

This page left intentionally blank

ABN 50 005 085 521

Recommended Holding Times and Preservations for Soil and Air

APPLICABLE LOCATIONS

The bottles, preservation and holding times following are for the ALS Environmental operations excluding the ALS Water Resources Group (WRG). The ALS operations covered by this document include;

Adelaide

Unit 2, 1 Burma Road Pooraka, Adelaide, SA 5095 P +6- 8-8162-5130 ALSEnviro.Adelaide@alsglobal.com

Brisbane

2 Byth Street (Corner Byth and Shand St) Stafford QLD 4053 P+61-7-3243-7222 ALSEnviro.Brisbane@alsglobal.com

Darwin

4/16 Charlton Court Woolner, NT 0820 P+61-488-073-271 ALSEnviro.Darwin@alsglobal.com

Gladstone

46 Callemondah Drive Clinton Gladstone, QLD 4680 P +61-7-4971-5600 ALSEnviro.Gladstone@alsglobal.com

Mackay

78 Harbour Road Mackay, QLD 4740 P+61-7-4944-0177 ALSEnviro.Mackay@alsglobal.com

Melbourne

2-4 Westall Road Springvale VIC 3171 P +61-3-8549-9600 ALSEnviro.Melbourne@alsglobal.com

Mudae

29 Sydney Road Mudgee NSW 2850 P +61-2-6372-6735 ALSEnviro.Mudgee@alsglobal.com

Newcastle

5 Rosegum Road Warabrook NSW 2304 P +61-2-4968-9433 ALSEnviro.Newcastle@alsglobal.com

Nowra

4/13 Geary Place North Nowra NSW 2541 P+61-2-4423-2063 ALSEnviro.Nowra@alsqlobal.com

Perth

10 Hod Way Malaga WA 6090 P +61-8-9209-7655 ALSEnviro.Perth@alsglobal.com

Roma

Lot 4, 73 Beaumont Drive Roma QLD 4455 P+61-7-4622-8978 ALSEnviro.Roma@alsglobal.com

Sydney

277-289 Woodpark Road Smithfield NSW 2164 P+61-2-8784-8555 ALSEnviro.Sydney@alsglobal.com

Townsville

14-15 Desma Court Bohle, QLD 4818 P+61-7-4796-0600 ALSEnviro.Townsville@alsglobal.com

Wollongong

99 Kenny Street Wollongong NSW 2500 P+61-2-4225-3125 ALSEnviro.Wollongong@alsglobal.com

SOIL AND SEDIMENT SAMPLE CHILLING AND SUBMISSION

Most soils should be chilled to $<4^{\circ}$ C or $<6^{\circ}$ C (guideline dependent) and transported to the laboratory within 24 hours. Sediments may also benefit from being frozen. ALS recommends placing samples on ice immediately upon sampling for best practice chilling with either repacking into another esky or draining of free water and replacement of ice just prior to dispatch. Chilling overnight in a fridge may also benefit. The post-chilling addition of ice bricks is also recommended where samples are air freighted or dispatched long distance and where couriers will not freight ice.

Please note that where possible samples should be submitted to the laboratory with at least half the recommended holding time remaining and it is preferable to avoid submitting holding time critical tests and full VOC suites late on Fridays without prior arrangement.

GENERAL NOTES

The following soil testing services are centralized in specialist laboratory locations. These tests require additional separate jars or bags to optimize service delivery and holding time compliance;

- Dioxins, Total S, TOC, TBT (Brisbane),
- PFOS/PFOA/AFFFs, PBDEs, Explosives, Herbicides, Pesticides and Ultra trace Organics (Sydney).
- Sizings, Asbestos and Foreign Materials Testing (Newcastle);
- TRH Speciation (Perth and Melbourne).
- ASS/AMD (Perth and Brisbane).

KEY			
G	Glass	G(T)	Glass Jar with Teflon Lined Lid
(ZH)	Zero Headspace required	РВ	Plastic (Polyethylene) Bag
HVAS	High Volume Air Sampler Paper	PTFE	Polytetrafluoroethylene Filter
PUF	Polyurethane Filter	P	Plastic Container

RIGHT SOLUTIONS | RIGHT PARTNER www.alsglobal.com

Recommended Holding Times and Preservations for Soil and Air

SOIL SAMPLES							
Parameter		ALS Preferred Container	Preservation	Holding Time		Reference	
INORGANICS, METAL	S, RADION	NUCLIDES, ACID SUL	FATE SOILS AND PHYSIC	AL PARAMETERS			
General Anions and Cation Chloride, Bromide, Fluor Sulfate, CEC & exchange Cations	ide,	PB, P or G	Chill, preferably to <6°C	28 days ⁽⁴⁾	1	NEPM 2013	
Asbestos		PB (double bagged)	Nil	Indefinite		AS4964-2004	
Cyanide		P or G	Chill, Store in dark	14 days (4)		NEPM 2013	
Electrical conductivity		PB, P or G	Chill, preferably to <6°C	7 days (4)		NEPM 2013	
Gross alpha, Gross beta		PB, P or G	Nil	180 days		SO9696, ISO9697, ASTM D7283-06.	
Hexavalent Chromium (A	lkali extract)	P or G	Chill, Store in dark	28 days (plus 7 for extrac	t) l	NEPM 2013	
Metals - General		PB, P or G	Nil	6 months		NEPM 2013	
Mercury		P or G	Chill, Store in dark	28 days		NEPM 2013	
Methyl Mercury	Option 1	G(T)	Chill, Store in dark	40 days		Horvat et al, 1993	
	Option 2	G(T)	Freeze, Store in dark	8 months		Horvat et al, 1993	
Moisture Content		PB, P or G	Chill, preferably to <6°C	14 days		NEPM 2013	
Organic Carbon / TOC	Option 1	G	Chill, to <6°C store in dark	28 days		NEPM 2013	
	Option 2	G	Freeze for sediments	6 months		NAGD 2009	
pH		PB, P or G	Chill, preferably to <6°C	7 days		NEPM 2013	
Radium 226, 228		PB or G	Nil	180 days		SO10703, ASTM D7283-06.	
SPOCAS, TOS,	Option 1	PB (exclude air)	Freeze	Indefinite		A S4969.1-2008	
Chromium Suite	Option 2		Chill, preferably to <6°C	24 hours			
	Option 3		Dry at 80°C	Indefinite			
Sizings and Foreign Material Tests		PB or G	Nil for sediments	Indefinite		NAGD 2009	
Sulfur - total		PB or G	Chill, preferably to <6°C	7 days (6 months once prepa		NEPM 2013 plus in house	
Sulfide		PB or G	Chill, preferably to <6°C	28 days (if Total S hold' time	met) l	NEPM 2013 plus in house	
ORGANICS - SEMIVO	LATILE CO	MPOUNDS (SVOCS)					
Volatile Organic chemicals including:			Place immediately in the esky and chill to <6°C using ice. Avoid exposure to light	up to 40 days)			
 Tributyl Tin (TBT) Dioxins & Furans & PCBs 		G(T)		1 year in dark, freeze to -1	10°C I	JSEPA 1613	
PBDEs		G(T)		1 year in dark, freeze to -1		JSEPA 1614	
PFOS & PFOA/ 6:2-FtS / A	AFFFs	G(T)		6 months		n house - POPs	
Tributyl Tin, OCPs, OPPs PAHs and PCBs		G(T)	Freeze within 12 hours of sampling for sediments	56 days (plus 40 days for extr		NAGD 2009	
ORGANICS - VOLATII	LE COMPO	UNDS (VOCS)					
VOCs except vinyl chlori and/or 2-chloroethyl vin		G(T)	Rapidly sample, minimize headspace and Chill to	14 days	1	NEPM 2013	
Vinyl chloride and styren	ie	G(T)	<6°C. Avoid exposure to light	7 days (Previously 14 do under NEPM 1999)	lays	NEPM 2013	
AMBIENT AIR, SOII							
ORGANICS - VOLATII	LE AND SE						
Parameter		Media	Preservation	•	Refere		
VOCs in whole air sampl	es	Silonite Canister	Nil	30 days	USEPA T	O15r	
VOCs on Sorbents		Charcoal Tubes/ Passive Badge	Nil	30 Days	NIOSH 1	500/1501/1003	
Semi-Volatile Organics ir PAHs	ncluding:	XAD-2 Resin	Protect from light.			JSEPA TO4A/TO10A/TO13A NOSH 5515/5517	
Chlorinated Benzenes Chlorinated Phenols		PTFE/GFF/MCE Filters	Store in the dark submit as soon as	7 Days	NIOSH 5	515/5517	

NOTES

Chlorinated Phenols

PUF

HVAS

Samples for ZHE TCLP or ASLP require a separate additional jar.

TCLP and other leaching procedures need to be conducted within the solid sample holding time of the analyte of interest.

When a moisture determination is used for dry weight basis reporting, no holding time applies when performed on the same day as the chemical analytes of interest.

Holding times for extracted parameters (e.g. Chloride, Bromide, EC, Sulfate, Sulfide & Cyanide) are until extraction. Extract solution holding times also apply.

7 Days

7 Days

USEPA TO4A/TO13A

USEPA TO4A/TO13A

submit as soon as

possible

ALS RECOMMENDED HOLDING TIMES AND PRESERVATIONS **FOR WATER**

Version 2

APPLICABLE LOCATIONS

The bottles, preservation and holding times following are for the ALS Environmental operations excluding the ALS Water Resources Group Victoria and ACT operations (WRG). The ALS operations covered by this document include;

Adelaide Unit 2, 1 Burma Road Pooraka, Adelaide, SA 5095 Phone: 61-8-8162 5130

Email: ALSEnviro.Adelaide@alsglobal.com

2 Byth Street (Corner Byth and Shand St) Stafford QLD 4053

Phone: 61-7-3243 7222

Email: ALSEnviro.Brisbane@alsglobal.com

Darwin

4/16 Charlton Court Woolner, NT 0820 Phone: 61-488 073 271

Email: ALSEnviro.Darwin@alsglobal.com

Gladstone

48 Callemondah Drive Clinton Gladstone, QLD 4680 Phone: 61-7-4971 5600

Email: ALSEnviro.Gladstone@alsglobal.com

Mackay

78 Harbour Road Mackay, QLD 4740 Phone: 61-7-4944 0177

Email: ALSEnviro.Mackay@alsglobal.com

Melbourne

2 - 4 Westall Road Springvale VIC 3171 Phone: 61-3-8549 9600

Email: ALSEnviro.Melbourne@alsglobal.com

29 Sydney Road Mudgee NSW 2850 Phone: 61-2-6372 6735

Email: ALSEnviro.Mudgee@alsglobal.com

Newcastle

5 Rosegum Close Warabrook NSW 2304 Phone: 61-2-4968 9433

Email: ALSEnviro.Newcastle@alsglobal.com

Nowra

4/13 Geary Place North Nowra NSW 2541 Phone: 61-2-4423 2063 ALSEnviro.Nowra@alsglobal.com

Perth 10 Hod Way

Malaga WA 6090 Phone: 61-8-9209 7655

Email: ALSEnviro.Perth@alsglobal.com

Roma

Lot 4, 73 Beaumont Drive Roma QLD 4455 Phone: 61-7-4622 8978

Email: ALSEnviro.Roma@alsglobal.com

277-289 Woodpark Road Smithfield NSW 2164 Phone: 61-2-8784 8555

Email: ALSEnviro.Sydney@alsglobal.com

Townsville

14-15 Desma Court Bohle, QLD 4818 Phone: 61-7-4796 0600

Email: ALSEnviro.Townsville@alsglobal.com

Wollongong 99 Kenny Street Wollongong NSW 2500

Phone: 61-2-4225 3125 Email: ALSEnviro.Wollongong@alsglobal.com

SAMPLE PRESERVATION, CHILLING AND SUBMISSION

Care must be taken not to rinse out or spill preservatives during sampling for OH&S reasons and to avoid cross contaminating other bottles (e.g. Nitric acid used for metals can contaminate nitrate analysis). Field filtration is mandatory or recommended for many tests and other tests must have exposure to air minimized to avoid analyte losses. Samples should generally be chilled to <4°C or <6°C (guideline dependent) and transported to the laboratory within 24 hours. ALS recommends placing samples in ice immediately upon sampling for best practice chilling with either repacking into another esky or draining of free water and replacement of ice just prior to dispatch. Chilling overnight in a fridge may also benefit. The post-chilling addition of ice bricks is also recommended where samples are air freighted or dispatched long distance and where couriers will not freight ice.

Samples taken from chlorinated water sources require the addition of sodium thiosulfate for microbiological, volatile organics and semi volatile organics. Please advise ALS accordingly to facilitate supply of appropriate containers.

Please note that where possible samples should be submitted to the laboratory with at least half the recommended holding time remaining and it is preferable to avoid submitting holding time critical tests late on Fridays without prior arrangement.

ALS RECOMMENDED HOLDING TIMES AND PRESERVATIONS FOR WATER

Parameter		Container	Preservation	Holding Time	Reference
GENERAL INORGANIC	S (METAL	S, NUTRIE	NTS, CATIONS, ANIONS, PHYSICAL	TESTS)	
Acidity / Alkalinity	· '	Р	Chill	14 days	APHA Table 1060:I
	Option 1	Р	H¸SO¸ to pH<2, Chill	28 days	APHA Table 1060:I
Ammonia Nitrogen	Option 2	Р	Chill	1 day	APHA Table 1060:I
Anions General: Chloride Fluoride, Bromide		Р	Chill	28 days	APHA Table 1060:I
BOD		Р	Chill	2 days	APHA Table 1060:I
Cations & Hardness:	Option 1	P	HNO, to pH<2, Chill	28 days (All)	AS/NZS 5667.1:1998
(Calcium, Magnesium,	Option 2	P	Nil, Chill	7 days (Ca, Mg, Hardness)	AS/NZS 5667.1:1998
Sodium, Potassium) Carbon Total Organic (TO)C)	G	H,SO, to pH<2, Chill	28 days (Na, K) 28 days	APHA Table 1060:I
Carbon Dissolved Organic		G	H,SO, to pH<2, Field filter ⁽²⁾ , Chill	28 days	APHA Table 1060:I
Chlorophyll a	, ,	P - Opaque	Chill, Store in dark	2 days	APHA Table 1060:I
emorophyn a			(filter, store filtrate frozen in foil)	28 days	ATTA TUBIC TOOU.
Chromium VI		Р	NaOH, Chill	28 days	USEPA 1669
COD		Р	H₂SO₄ to pH<2, Chill	28 days	APHA Table 1060:I
Colour		Р	Chill	2 days	APHA Table 1060:I
Conductivity (EC)		Р	Chill	28 days	APHA Table 1060:I
Cyanide		P - Opaque	NaOH to pH>12, Chill (1)	14 days	APHA 1060:I
Ferrous (Fe ²⁺)		P (A)	HCl to pH<2. (ZH), Field filter ⁽²⁾ , Chill	7 days	ISO 5667-3:2003
Formaldehyde		Р	Chill	2 days	ASTM D6303-98
Option 1		P (A)	HNO ₃ to pH<2, Chill (2)	28 days	APHA Table 1060:I
Mercury	Option 2	P (A)	Nil – Lab Acidify in <14 days, Chill ⁽²⁾	28 days	USEPA 200.8
Metals General Option 1 Option 2		P (A)	HNO ₃ to pH<2, Chill (2)	6 months	APHA Table 1060:I
		P (A)	Nil - Lab Acidify in <14 days, Chill ⁽²⁾	6 months	USEPA 200.8
Nitrate Nitrogen		Р	Chill	2 days	APHA Table 1060:I
Nitrite Nitrogen		Р	Chill	2 days	APHA Table 1060:I
	(110)	_	H ₃ SO, to pH<2, Chill	28 days	APHA Table 1060:I/
Nitrogen - Oxidised Nitro	gen (NOX)	Р	Chill	2 days	AS/NZS 5667.1:1998
Nitrogen and Phosphorou (Persulfate Method)	ıs - Total	Р	Nil, Chill	1 day	AS/ NZS 5667.1:1998
Nitrogen - Total		Р	H ₃ SO, to pH<2, Chill	28 days	APHA Table 1060:I
Oil & Grease		G	NaHSO, or H ₃ SO, to pH<2,Chill	28 days	APHA Table 1060:I
Perchlorate		Р	Filter, Chill, Store in dark	28 days	USEPA 6850
pH		Р	Nil	6 hours	AS/NZS 5667.1:1998
Phenols - Total		P, G	H,SO, to pH<2, Chill	28 days	APHA Table 1060:I
Phosphorus - Reactive		P	Nil, Chill	2 days	APHA Table 1060:I
Phosphorus - Total		Р	H,SO, to pH<2, Chill	28 days	AS/NZS 5667.1:1998
Radionuclides incl' Gross Gross beta & Radium 226		P, G	Lab Acidify in <5 days, Chill or HNO, to pH<2, Chill	6 months	APHA 7010B
Solids (TS, TSS, TDS)	,	Р	Chill	7 days	APHA Table 1060:I
		_	Chill	2 days	
Surfactants (NIS, MBAS)		G	Chill, submit in 2 days, preserve in Lab		AS/NZS 5667.1:1998
Silica		Р	Chill	28 days	APHA Table 1060:I
Sulfide		Р	Zn Acetate/NaOH, Chill	7 days	AS/NZS 5667.1:1998
Sulfite		Р	EDTA/Zn Acetate, Chill	2 days	AS/NZS 5667.1:1998
Speciated Arsenic and Sel	enium	P (A)	HCl to pH<2, Chill, (Zero Headspace)	28 days	USEPA1632-2001
Thiocyanate		Р	HNO ₃ to pH<2, Chill	6 months	APHA 4500CN M
TKN (Total Kjeldahl Nitro	gen)	Р	H ₂ SO ₄ to pH<2, Chill	28 days	APHA Table 1060:I
Turbidity		Р	Store in dark, Chill	2 days	APHA Table 1060:I
ALGAE AND MICROBI	OLOGICA	L TESTS			
Algao Analysis	Option 1	.1	Lugols at 1% v/v ratio	6 months	Hotzel and Croome 1999
Algae Analysis	Option 2	Р	Nil	48 hours	Hotzel and Croome 1999
General Microbiological T Faecal coliforms, E-coli, H		P (sterile)	$Na_2S_2O_3$,(if chlorinated)/ Chill	1 day	АРНА 9060В

NOTES

 $^{^{(2)}}$ Dissolved Metals, Ferrous Iron and DOC should be field filtered using a 0.45 μ m filter prior to placing in the container.

	КІ	EY	
G	Glass	Amber (T)	Amber Glass Bottle with Teflon Lined Lid
P (A)	Plastic (verified metal free)	P	Plastic (Polyethylene)
(TS)	40mL Vial with Teflon Lined Septum	(ZH)	Zero Headspace required

⁽¹⁾ When samples are suspected of containing Sulfide, a Sulfide Pre-treatment bottle (containing Lead Acetate) should be used to remove Sulfide prior to decanting into the 'Cyanide' bottle.

ALS RECOMMENDED HOLDING TIMES AND PRESERVATIONS FOR WATER

		GANICS - SEMIVOLATILE COMPOU		
Parameter		Preservation	Holding Time	Reference
Acrylamide	Amber (T)	Chill	7 days	USEPA SW846 8316 1998
Alkyl phenol Ethoxylates	Amber (T)	Chill	2 days	AS/NZS 5667.1:1998
Carbamates	Amber (T)	Chill, submit in 2 days, preserve in Lab	'	In house USEPA 632
	, ,		7 days (3)	
Chlorinated Hydrocarbons (SV)	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
Dioxins	Amber (T)	Chill	1 year	USEPA 1613.B
Explosives	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
Glyphosate	Amber (T)	Chill	14 days ⁽³⁾	USEPA 547
Glycols	Vial (TS)	Chill	7 days (3)	USEPA SW846 2007
Herbicides (Phenoxy Acid)	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
N-Nitrosodimethylamine (NDMA)	Amber (T)	Chill	7 days (3)	USEPA 607
Organochlorine Pesticides & PCBs	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
Organophosphorus Pesticides	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
Paraquat/Diquat	Р	Chill	7 days (3)	USEPA SW846 2007
Petroleum Hydrocarbons (C ₁₀ -C ₄₀)	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
Phenols and Phthalate Esters	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
PFOS & PFOA/ 6:2-FTS and AFFFs	P (PTFE free)	Chill	6 months	In house - POPs
Polyaromatic Hydrocarbons (PAHs)	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
PPCPs	Amber (T)	Nil	7 days (3)	AGWR 2008, USEPA 1694
Synthetic Pyrethroids	Amber (T)	Chill	7 days (3)	USEPA SW846-8270D
Tributyl Tin (TBT)	Amber (T)	Chill	7 days (3)	USEPA SW846 2007
	ORGANICS	- VOLATILE COMPOUNDS (VOCS)	/ DISSOLVED GASES	5
Parameter	Container	Preservation	Holding Time	Reference
BTEXN plus TRH/TPH Hydrocarbons (C _e -C ₁₀)	Vial (TS)	H ₂ SO ₄ or NaHSO ₄ to pH<2, Chill, (ZH)	14 days	USEPA SW846 2007
C ₁ -C ₄ Gases (including Methane)	Vial (TS)	H_2SO_4 or NaHSO $_4$ to pH<2, Chill, (ZH)	14 days	USEPA SW846 2007/ NATATTEN.WPD 2002
Chloroacetic Acids		NH ₄ Cl, Chill, (ZH)	28 days	USEPA 552.1
Acrylonitrile, 1,4-Dioxane, Pyridine	Vial (TS)	H_2SO_4 or NaHSO $_4$ to pH<2, Chill, (ZH)	14 days	USEPA 603, 1671 & 524.2 USEPA SW846 2007
Acrolein	1 1	Chill, (ZH)	3 days	USEPA 603
		Chill, submit in 3 days, preserve in Lab	14 days	
Halo Acetic Acids		NH ₂ Cl, Chill, (ZH)	28 days	USEPA 552.1
MIB/Geosmin		Chill, (ZH)	3 days	APHA 6040
V05 : 1 !: !!! . !!		Chill, submit in 3 days, preserve in Lab	7 days	1105D4 6140 46 2005
VOCs including: Halogenated Aliphatics, Aromatics, Monocyclic Aromatics (MAHs), Trihalomethanes (THMs) and Alcohols	Vial (TS)	H ₂ SO ₄ or NaHSO ₄ to pH<2, Chill, (ZH)	14 days	USEPA SW846 2007

	KE	Y	
G	Glass	Amber (T)	Amber Glass Bottle with Teflon Lined Lid
P (A)	Plastic (verified metal free)	Р	Plastic (Polyethylene)
(TS)	40mL Vial with Teflon Lined Septum	(ZH)	Zero Headspace required

NOTES

 $^{^{(3)}}$ Samples can also be extracted within 7 days and the resulting extracts analysed within 40 days.

APPENDIX N

LABORATORY CERTIFICATES

CERTIFICATE OF ANALYSIS

Work Order : ES2132020

: AARGUS PTY LTD

Contact : CYNTHIA

Address Address : PO BOX 398

DRUMMOYNE NSW. AUSTRALIA 2047

Telephone : +61 1300137038 Telephone : ES8338 DSI Date Samples Received Project

Order number C-O-C number

: SBS Sampler

Client

Site · GREENACRE

Quote number : EN/222 No. of samples received : 1

No. of samples analysed : 1 Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

: 277-289 Woodpark Road Smithfield NSW Australia 2164

: +61-2-8784 8555

: 03-Sep-2021 08:50

Date Analysis Commenced : 06-Sep-2021

Issue Date : 08-Sep-2021 16:24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 5 Work Order : ES2132020

Client : AARGUS PTY LTD

Project : ES8338 DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP132-LL: Where reported, Total PAH is the sum of the reported concentrations of all PAHs at or above the LOR.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP132-LL: Positive PAH result is confirmed by re-analysis.

Page : 3 of 5
Work Order : ES2132020

Client : AARGUS PTY LTD

Project : ES8338 DSI

Analytical Results

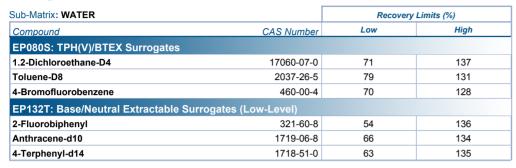
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GWSS1	 	
		Samplii	ng date / time	02-Sep-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2132020-001	 	
,				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.003	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.006	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP080/071: Total Petroleum Hydrocarb						
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	 	
EP080/071: Total Recoverable Hydroca		3 Fraction				
C6 - C10 Fraction	C6_C10		μg/L	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	 	
(F1)	00_010 B1EX		P9'-			
>C10 - C16 Fraction		100	μg/L	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	 	
>C34 - C40 Fraction		100	μg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
	31-20-3	,	P3	•		

Page : 4 of 5
Work Order : ES2132020

Client : AARGUS PTY LTD

Project : ES8338 DSI

Analytical Results


Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GWSS1	 	
(maga III I <u></u>		Sampli	ng date / time	02-Sep-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2132020-001	 	
				Result	 	
EP132B: Polynuclear Aromatic Hydro	carbons					
Naphthalene	91-20-3	0.02	μg/L	0.04	 	
Acenaphthylene	208-96-8	0.02	μg/L	<0.02	 	
Acenaphthene	83-32-9	0.02	μg/L	<0.02	 	
Fluorene	86-73-7	0.02	μg/L	<0.02	 	
Phenanthrene	85-01-8	0.02	μg/L	0.06	 	
Anthracene	120-12-7	0.02	μg/L	<0.02	 	
Fluoranthene	206-44-0	0.02	μg/L	<0.02	 	
Pyrene	129-00-0	0.02	μg/L	<0.02	 	
Benz(a)anthracene	56-55-3	0.02	μg/L	<0.02	 	
Chrysene	218-01-9	0.02	μg/L	<0.02	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.02	μg/L	<0.02	 	
Benzo(k)fluoranthene	207-08-9	0.02	μg/L	<0.02	 	
Benzo(a)pyrene	50-32-8	0.005	μg/L	<0.005	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.02	μg/L	<0.02	 	
Dibenz(a.h)anthracene	53-70-3	0.02	μg/L	<0.02	 	
Benzo(g.h.i)perylene	191-24-2	0.02	μg/L	<0.02	 	
^ Total PAH		0.005	μg/L	0.100	 	
^ Benzo(a)pyrene TEQ (zero)		0.005	μg/L	<0.005	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	105	 	
Toluene-D8	2037-26-5	2	%	116	 	
4-Bromofluorobenzene	460-00-4	2	%	113	 	
EP132T: Base/Neutral Extractable Su	rrogates (Low-Leve	l)				
2-Fluorobiphenyl	321-60-8	0.02	%	85.2	 	
Anthracene-d10	1719-06-8	0.02	%	114	 	
4-Terphenyl-d14	1718-51-0	0.02	%	110	 	

Page : 5 of 5 Work Order : ES2132020

Client : AARGUS PTY LTD

Project : ES8338 DSI

Surrogate Control Limits

QUALITY CONTROL REPORT

Telephone

: 1 of 6

: +61-2-8784 8555

Accreditation No. 825

· ES2132020 Work Order Page

Client : AARGUS PTY LTD Laboratory : Environmental Division Sydney

: Customer Services ES Contact : CYNTHIA Contact

Address Address : PO BOX 398 : 277-289 Woodpark Road Smithfield NSW Australia 2164

DRUMMOYNE NSW. AUSTRALIA 2047 Telephone : +61 1300137038

: GREENACRE

: EN/222

Project : ES8338 DSI Date Samples Received : 03-Sep-2021

Order number **Date Analysis Commenced** : 06-Sep-2021

· 08-Sep-2021 C-O-C number Issue Date

Sampler : SBS Site

No. of samples received : 1 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Analyst Ivan Taylor Sydney Inorganics, Smithfield, NSW Page : 2 of 6
Work Order : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

Laboratorii Dunlinata (DUD) Donort

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
G020F: Dissolved	Metals by ICP-MS (Q	C Lot: 3884565)									
ES2131988-013	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.217	0.216	0.0	0% - 20%		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.040	0.040	0.0	No Limit		
NN2109994-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.104	0.102	2.0	0% - 20%		
G035F: Dissolved	Mercury by FIMS (Qo	C Lot: 3884566)									
NN2109994-005	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
P080/071: Total Pe	troleum Hydrocarboi	ns (QC Lot: 3886466)									
ES2131927-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit		
ES2132080-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	40	40	0.0	No Limit		
P080/071: Total Re	coverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3886466)									
ES2131927-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit		
ES2132080-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	40	40	0.0	No Limit		
P080: BTEXN (QC	Lot: 3886466)										

Page : 3 of 6 ES2132020 Work Order : AARGUS PTY LTD Client : ES8338 DSI

Project

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EP080: BTEXN (QC	Lot: 3886466) - continu	ıed										
ES2131927-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit			
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit			
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit			
			106-42-3									
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit			
ES2132080-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit			
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit			
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit			
			106-42-3									
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit			

Page : 4 of 6
Work Order : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound	CAS Number		Unit	Result	Concentration	LCS	Low	High		
EG020F: Dissolved Metals by ICP-MS (QCLot: 3884565)										
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.1	85.0	114		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	89.9	84.0	110		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	86.6	85.0	111		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	89.9	81.0	111		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	90.2	83.0	111		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	88.2	82.0	112		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	93.3	81.0	117		
EG035F: Dissolved Mercury by FIMS (QCLot: 3884566)										
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	95.7	83.0	105		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 38851	108)									
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	82.9	55.8	112		
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	86.3	71.6	113		
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	81.9	56.0	121		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 38864	166)									
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	87.1	75.0	127		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	_ot: 3885108)								
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	74.1	57.9	119		
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	86.0	62.5	110		
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	63.8	61.5	121		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	_ot: 3886466)								
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	88.0	75.0	127		
EP080: BTEXN (QCLot: 3886466)										
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	84.0	70.0	122		
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	93.4	69.0	123		
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	90.8	70.0	120		
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	91.8	69.0	121		
. ,	106-42-3									
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	94.4	72.0	122		
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	93.1	70.0	120		
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 38	83947)									
EP132-LL: Naphthalene	91-20-3	0.02	μg/L	<0.02	0.25 μg/L	107	62.0	136		
EP132-LL: Acenaphthylene	208-96-8	0.02	μg/L	<0.02	0.25 μg/L	113	68.0	128		
EP132-LL: Acenaphthene	83-32-9	0.02	μg/L	<0.02	0.25 μg/L	116	69.0	121		

Page : 5 of 6
Work Order : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
		Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (QCL								
EP132-LL: Fluorene	86-73-7	0.02	μg/L	<0.02	0.25 μg/L	112	69.0	131
EP132-LL: Phenanthrene	85-01-8	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	137
EP132-LL: Anthracene	120-12-7	0.02	μg/L	<0.02	0.25 μg/L	110	64.0	120
EP132-LL: Fluoranthene	206-44-0	0.02	μg/L	<0.02	0.25 μg/L	105	63.0	129
EP132-LL: Pyrene	129-00-0	0.02	μg/L	<0.02	0.25 μg/L	104	67.0	127
EP132-LL: Benz(a)anthracene	56-55-3	0.02	μg/L	<0.02	0.25 μg/L	106	72.0	132
EP132-LL: Chrysene	218-01-9	0.02	μg/L	<0.02	0.25 μg/L	115	65.0	125
EP132-LL: Benzo(b+j)fluoranthene	205-99-2	0.02	μg/L	<0.02	0.25 μg/L	120	66.0	130
	205-82-3							
EP132-LL: Benzo(k)fluoranthene	207-08-9	0.02	μg/L	<0.02	0.25 μg/L	99.7	64.0	130
EP132-LL: Benzo(a)pyrene	50-32-8	0.005	μg/L	<0.005	0.25 μg/L	107	61.0	125
EP132-LL: Indeno(1.2.3.cd)pyrene	193-39-5	0.02	μg/L	<0.02	0.25 μg/L	107	67.0	131
EP132-LL: Dibenz(a.h)anthracene	53-70-3	0.02	μg/L	<0.02	0.25 μg/L	106	67.0	135
EP132-LL: Benzo(g.h.i)perylene	191-24-2	0.02	μg/L	<0.02	0.25 μg/L	107	66.0	130
EP132-LL: Total PAH		0.005	μg/L	<0.005				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	-Matrix: WATER					Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High					
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 3884565)											
ES2131990-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	91.0	70.0	130					
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	91.8	70.0	130					
		EG020A-F: Chromium	7440-47-3	1 mg/L	91.4	70.0	130					
	EG020A-F: Copper	7440-50-8	1 mg/L	92.5	70.0	130						
		EG020A-F: Lead	7439-92-1	1 mg/L	90.3	70.0	130					
		EG020A-F: Nickel	7440-02-0	1 mg/L	92.0	70.0	130					
		EG020A-F: Zinc	7440-66-6	1 mg/L	93.0	70.0	130					
EG035F: Dissolve	d Mercury by FIMS (QCLot: 3884566)											
ES2132020-001	GWSS1	EG035F: Mercury	7439-97-6	0.01 mg/L	94.8	70.0	130					
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 3886466)											
ES2131927-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	102	70.0	130					
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions(Q	CLot: 3886466)										
ES2131927-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	100	70.0	130					

Page : 6 of 6 Work Order : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

130

Matrix Spike (MS) Report Sub-Matrix: WATER SpikeRecovery(%) Spike Acceptable Limits (%) Laboratory sample ID Sample ID Method: Compound CAS Number Concentration MS Low High EP080: BTEXN (QCLot: 3886466) ES2131927-001 Anonymous EP080: Benzene 71-43-2 25 µg/L 90.3 70.0 130 108-88-3 25 µg/L 100 70.0 130 EP080: Toluene 100-41-4 99.6 70.0 130 25 µg/L EP080: Ethylbenzene EP080: meta- & para-Xylene 99.6 70.0 130 108-38-3 25 μg/L 106-42-3 95-47-6 70.0 130 EP080: ortho-Xylene 25 µg/L 99.7

91-20-3

25 µg/L

89.0

70.0

EP080: Naphthalene

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2132020** Page : 1 of 4

Client : AARGUS PTY LTD Laboratory : Environmental Division Sydney

Contact: CYNTHIATelephone: +61-2-8784 8555Project: ES8338 DSIDate Samples Received: 03-Sep-2021Site: GREENACREIssue Date: 08-Sep-2021

Sampler : SBS No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

 Page
 : 2 of 4

 Work Order
 : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

16-Oct-2021

07-Sep-2021

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER

GWSS1

Quality Control Sample Type	Co	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH Compounds in Water	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH Compounds in Water	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Method	Sample Date	Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Natural (EG020A-F) GWSS1	02-Sep-2021				06-Sep-2021	01-Mar-2022	✓		
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Natural (EG035F) GWSS1	02-Sep-2021				06-Sep-2021	30-Sep-2021	✓		
EP080/071: Total Petroleum Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP071) GWSS1	02-Sep-2021	06-Sep-2021	09-Sep-2021	✓	07-Sep-2021	16-Oct-2021	✓		
Amber VOC Vial - Sulfuric Acid (EP080) GWSS1	02-Sep-2021	07-Sep-2021	16-Sep-2021	✓	07-Sep-2021	16-Sep-2021	✓		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions									
Amber Glass Bottle - Unpreserved (EP071) GWSS1	02-Sep-2021	06-Sep-2021	09-Sep-2021	✓	07-Sep-2021	16-Oct-2021	✓		
Amber VOC Vial - Sulfuric Acid (EP080) GWSS1	02-Sep-2021	07-Sep-2021	16-Sep-2021	✓	07-Sep-2021	16-Sep-2021	✓		
EP080: BTEXN									
Amber VOC Vial - Sulfuric Acid (EP080) GWSS1	02-Sep-2021	07-Sep-2021	16-Sep-2021	✓	07-Sep-2021	16-Sep-2021	✓		
EP132B: Polynuclear Aromatic Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP132-LL)									

02-Sep-2021

06-Sep-2021

09-Sep-2021

Page : 3 of 4
Work Order : ES2132020

Client : AARGUS PTY LTD
Project : ES8338 DSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: √ = Quality Control frequency within specification.

Matrix: WATER				Evaluatio	n: x = Quality Co	ntroi frequency i	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	0	1	0.00	10.00	sc .	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH Compounds in Water	EP132-LL	0	1	0.00	5.00	æ	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

 Page
 : 4 of 4

 Work Order
 : ES2132020

 Client
 : AARGUS PTY LTD

 Project
 : ES8338 DSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH Compounds in Water	EP132-LL	WATER	In house, Samples are extracted into solvent in original containers. Determination by large volume injection GCMS in selected ion monitoring (SIM) mode.
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Sep. Funnel Extraction /Acetylation of Phenolic Compounds	ORG14-AC	WATER	In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2132020

Client : AARGUS PTY LTD Laboratory : Environmental Division Sydney

Contact : CYNTHIA Contact : Customer Services ES

Address : PO BOX 398 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

 Telephone
 : +61
 1300137038
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61
 1300136038
 Facsimile
 : +61-2-8784 8500

Project : ES8338 DSI Page : 1 of 3

DRUMMOYNE NSW, AUSTRALIA 2047

 Order number
 : --- Quote number
 : EB2017AARGUS0001 (EN/222)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : GREENACRE

Sampler : SBS

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 8.3'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

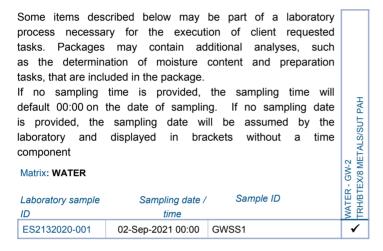
• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 03-Sep-2021

Page

2 of 3 ES2132020 Amendment 0 Work Order Client : AARGUS PTY LTD



Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Mercury by FIMS : EG035	F	
GWSS1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals by ICP-MS - Suite	A : EG020A-F	
GWSS1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered

Summary of Sample(s) and Requested Analysis

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 03-Sep-2021

Page

3 of 3 ES2132020 Amendment 0 Work Order Client : AARGUS PTY LTD

Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	anika@aargus.net
ANIKA		
- A4 - AU Tax Invoice (INV)	Email	anika@aargus.net
CYNTHIA		
 *AU Certificate of Analysis - NATA (COA) 	Email	cynthia@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	cynthia@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	cynthia@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	cynthia@aargus.net
- A4 - AU Tax Invoice (INV)	Email	cynthia@aargus.net
- Chain of Custody (CoC) (COC)	Email	cynthia@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	cynthia@aargus.net
- EDI Format - XTab (XTAB)	Email	cynthia@aargus.net
Gokul		
 *AU Certificate of Analysis - NATA (COA) 	Email	gokul@aargus.net
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	gokul@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	gokul@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	gokul@aargus.net
- A4 - AU Tax Invoice (INV)	Email	gokul@aargus.net
- Chain of Custody (CoC) (COC)	Email	gokul@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	gokul@aargus.net
- EDI Format - XTab (XTAB)	Email	gokul@aargus.net
MARK KELLY		
 *AU Certificate of Analysis - NATA (COA) 	Email	mark.kelly@aargus.net
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	mark.kelly@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	mark.kelly@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mark.kelly@aargus.net
- A4 - AU Tax Invoice (INV)	Email	mark.kelly@aargus.net
- Chain of Custody (CoC) (COC)	Email	mark.kelly@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	mark.kelly@aargus.net
- EDI Format - XTab (XTAB)	Email	mark.kelly@aargus.net
NINGYE ZHANG		
 *AU Certificate of Analysis - NATA (COA) 	Email	ningye@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ningye@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ningye@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ningye@aargus.net
- A4 - AU Tax Invoice (INV)	Email	ningye@aargus.net
- Chain of Custody (CoC) (COC)	Email	ningye@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	ningye@aargus.net
- EDI Format - XTab (XTAB)	Email	ningye@aargus.net

AARGUS PTY LTD

6 Carter Street Lidcombe, NSW 2141

P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038

Laboratory Test Request / Chain of Custody Record

Email reports: cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net;ningye@aargus.net Email invoices: anika@aargus.net; cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; ningye@aargus.net

This cape This	ğ	Lidcombe, NSW 2141	CKOMMC	DRUMMOYNE NSW 14/0 Fax: 1500 150 050	Fax: 1300	30 030		EIII III III III III III III III III II	gus.iict, cyiit	ila@aaigus.	et, gondietanger		ETIAII IIIVOIGES, Alinea@aaigus, Tet, Cyttaila@aaigus, gottai@aaigus, Tetailaiii IIIVOIGES, alinea@aaigus, Tet	_	of	_
Project Manager: State	ö		atory Services)	Environmental				S	ampling Dat		12.09.2021	Job No:	ES8338			
Project Manager: MK Location: GREENACRE Project Manager: MK Location: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: GREENACRE Cocation: Cocation: GREENACRE Cocation: Co		277 - 289 Woodpark R SMITHFIELD, NSW 210	oad 64						ampled By:		SBS	Project:	DSI			
PLEASE FILTER IN THE LAB LPH & Super ULTRA LPH & Super ULTRA	P.H.	02 8784 8555 N: Samples Receipt			FAX:	ì	02 878	,	roject Mana		AK.	Location:	GREENACRE			
Location Depth (m) Date (m) Soil (Filled Air (M)) Air (M) PLEASE FILTER IN THE LAB (As, Cd, Cr, Cu, Hg, Pb, NI) TPH & SUPER ULTRA (M) SUPER ULTRA (M) TRACE PAH (M) Analysis Suite(s) Suite(s) (M) Analysis Suite(s) Suite(s) (M) Analysis Suite(s) Super ULTRA (M) TPH & SUPER (M) TPH & SUPER (M) Analysis Suite(s)		Samplii	ng details		Sar	nple type	_		Res	ults requ	ired by: WE	DNESDA	/, 8TH SEPTEMBER ?	2021		
GWSS1 (III) 02:09:2021 WG, WP, Vial Signature Name Received by Date Date SAAD SBS SBS 02:09:2021 Test required Signature Signature Signature Date SAAD SBS OLG:09:2021 Test required Signature Signature Signature Signature SAAD SBS OLG:09:2021 Test required Signature Signature Signature SAAD SBS USG Undisturbed soil sample (glass jar) Test required Signature Signature Water sample, plastic bottle DSG Disturbed soil sample (glass jar) ACAN Air sample, canister	<u>_</u>	Location	Depth	Date	Soil	Water (Filled	1	PLEASE FILTER IN T Metals (As, Cd, Cr, Cu, I	HE LAB Hg, Pb, Ni,	TPH & BTEX	SUPER ULTRA TRACE PAH				Analysis Suite(s)	KEEP SAMPLE?
Relinquished by Received by Received by Signature Signat		GWSS1	(m)	02 09 2021	5	VG. WP.] a a	\		>	>				GW-2	YES
Name Name Signature Date Name Signature	7			Relinquished									Received by			
SAAD SBS 02.09.2021 Factor SAAD SBS O2.09.2021 Factor SAAD SBS O2.09.2021 Factor SAAD SBS SAAD SBS SAAD SBS SAAD SBS SAAD SBS SB		Name			Signature			Date		Name		S			Date	
lend: Water sample, glass bottle USG Undisturbed soil sample (glass jz DSP Disturbed soil sample (glass jar) Water sample, plastic bottle Glass vial	<u> </u>	SAAD			SBS			02.09.2021		TCX+		A			5500	
	Leg W W G	end:	ottle oottle			USG DSG OTH	Undist Disturb Other	urbed soil sample (glass ja oed soil sample (glass jar)		J Disturbed soil Test required Air sample, ca	sampie (small plasti inister	ickag)			² mole H⁺/tonn	Φ

Environmental Division Sydney Work Order Reference ES2132020

0

Telephone: +61-2-8784 8555

CERTIFICATE OF ANALYSIS

Work Order : ES2131821

: AARGUS PTY LTD

Contact : MR MARK KELLY

Address : PO BOX 398

Client

DRUMMOYNE NSW, AUSTRALIA 2047

Telephone : 1300137038
Project : ES8338 DSI

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : SBS

 Site
 : Greenacre

 Quote number
 : EN/222

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 01-Sep-2021 22:15

Date Analysis Commenced : 02-Sep-2021

Issue Date : 08-Sep-2021 16:44

ed by ALS. This document shall

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alana Smylie Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2131821

Client : AARGUS PTY LTD

Project : ES8338 DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 - Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)

The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos

Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.

All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.

- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 7
Work Order : ES2131821

Client : AARGUS PTY LTD

Project : ES8338 DSI

Analytical Results

Sub-Matrix: SOIL			Sample ID	SS1	SS2	 	
(Matrix: SOIL)							
		Samplii	ng date / time	31-Aug-2021 00:00	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2131821-001	ES2131821-002	 	
				Result	Result	 	
EA055: Moisture Content (Dried @ 105-	110°C)						
Moisture Content		1.0	%	12.9	6.0	 	
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils	;					
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	 	
Asbestos Type	1332-21-4	-		-	-	 	
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	 	
Sample weight (dry)		0.01	g	774	776	 	
Synthetic Mineral Fibre		0.1	g/kg	No	No	 	
Organic Fibre		0.1	g/kg	No	No	 	
APPROVED IDENTIFIER:		-		A. SMYLIE	A. SMYLIE	 	
EA200N: Asbestos Quantification (non-	NATA)						
Ø Asbestos (Fines and Fibrous	1332-21-4	0.0004	g	<0.0004	<0.0004	 	
<7mm)							
ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001	<0.001	 	
Ø Asbestos Containing Material	1332-21-4	0.1	g	<0.1	<0.1	 	
Ø Asbestos Containing Material	1332-21-4	0.01	% (w/w)	<0.01	<0.01	 	
(as 15% Asbestos in ACM >7mm)							
ø Weight Used for % Calculation		0.0001	kg	0.774	0.776	 	
Ø Fibrous Asbestos >7mm		0.0004	g	<0.0004	<0.0004	 	
EG005(ED093)T: Total Metals by ICP-AE							
Arsenic	7440-38-2	5	mg/kg	<5	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	18	60	 	
Copper	7440-50-8	5	mg/kg	18	51	 	
Lead	7439-92-1	5	mg/kg	20	11	 	
Nickel	7440-02-0	2	mg/kg	22	58	 	
Zinc	7440-66-6	5	mg/kg	23	61	 	
EG035T: Total Recoverable Mercury by							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	 	
EP066: Polychlorinated Biphenyls (PCB	3)						
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	 	
EP068A: Organochlorine Pesticides (O	C)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	 	

Page : 4 of 7 Work Order : ES2131821

Client : AARGUS PTY LTD

Project : ES8338 DSI

Analytical Results

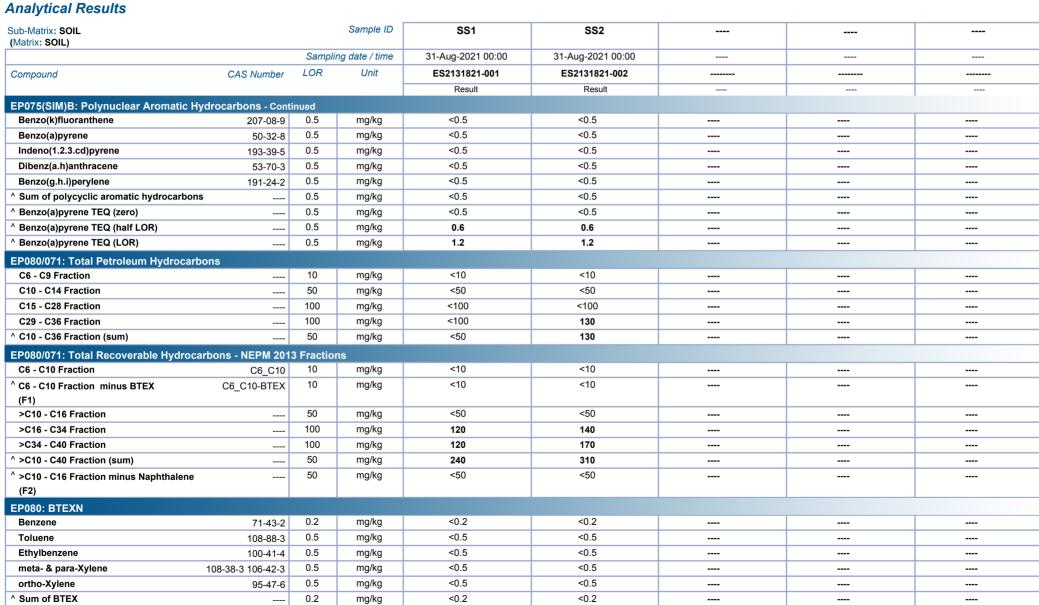
Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1	SS2	 	
·		Samplii	ng date / time	31-Aug-2021 00:00	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2131821-001	ES2131821-002	 	
,			-	Result	Result	 	
EP068A: Organochlorine Pestici	des (OC) - Continued						
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	 	
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	 	
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	 	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	 	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	 	
	0-2						
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	 	

Page : 5 of 7 Work Order ES2131821

Client : AARGUS PTY LTD

ES8338 DSI Project

^ Total Xylenes


Naphthalene

0.5

91-20-3

mg/kg

mg/kg

<0.5

<0.5

<1

 Page
 : 6 of 7

 Work Order
 : ES2131821

Client : AARGUS PTY LTD

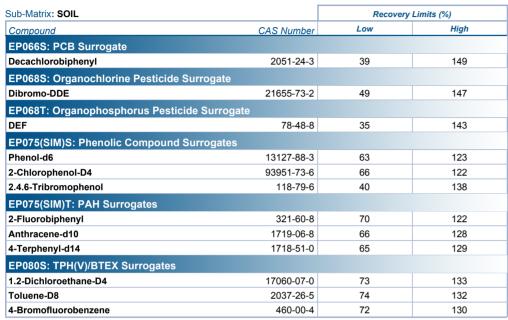
Project : ES8338 DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1	SS2	 	
		Samplii	ng date / time	31-Aug-2021 00:00	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2131821-001	ES2131821-002	 	
				Result	Result	 	
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	86.3	93.6	 	
EP068S: Organochlorine Pesticide Sur	rogate						
Dibromo-DDE	21655-73-2	0.05	%	83.1	70.0	 	
EP068T: Organophosphorus Pesticide	Surrogate						
DEF	78-48-8	0.05	%	80.2	62.4	 	
EP075(SIM)S: Phenolic Compound Sur	rogates						
Phenol-d6	13127-88-3	0.5	%	79.1	78.2	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	84.8	87.6	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	71.0	74.1	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	94.1	92.2	 	
Anthracene-d10	1719-06-8	0.5	%	100	98.9	 	
4-Terphenyl-d14	1718-51-0	0.5	%	94.5	90.7	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.7	87.9	 	
Toluene-D8	2037-26-5	0.2	%	84.5	83.5	 	
4-Bromofluorobenzene	460-00-4	0.2	%	86.0	87.5	 	

Analytical Results Descriptive Results

Sub-Matrix: SOIL


Oub-Matrix. SOIL		
Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils	
EA200: Description	SS1 - 31-Aug-2021 00:00	Soil sample.
EA200: Description	SS2 - 31-Aug-2021 00:00	Soil sample.

Page : 7 of 7 Work Order : ES2131821

Client : AARGUS PTY LTD

Project : ES8338 DSI

Surrogate Control Limits

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200N: Asbestos Quantification (non-NATA)

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order : ES2131821

Client : AARGUS PTY LTD

Contact : MR MARK KELLY

Address : PO BOX 398

DRUMMOYNE NSW, AUSTRALIA 2047

Telephone : 1300137038
Project : ES8338 DSI

Order number : ---C-O-C number : ----

Sampler : SBS

Site : Greenacre
Quote number : EN/222

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 9

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 01-Sep-2021

Date Analysis Commenced : 02-Sep-2021

Issue Date : 08-Sep-2021

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alana Smylie Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 9
Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	S (QC Lot: 3887401)							
ES2131757-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	12	20	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	5	8	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	13	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	25	45	13.2	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	163	213	17.2	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	102	192	19.6	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-1	10°C) (QC Lot: 3887403)							
ES2131798-010	Anonymous	EA055: Moisture Content		0.1	%	20.9	20.3	2.8	0% - 20%
EG035T: Total Reco	overable Mercury by I	FIMS (QC Lot: 3887402)							
ES2131757-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.5	40.5	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3881242)							
ES2131281-002	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 3881239)							
ES2131281-002	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

 Page
 : 3 of 9

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

Project : ES8338 DSI

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochlo	orine Pesticides (OC)	(QC Lot: 3881239) - continued							
ES2131281-002	Anonymous	EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydr	ocarbons (QC Lot: 3881241)							
ES2131798-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.2	2.0	7.2	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.7	1.6	8.6	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.2	1.2	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.2	1.1	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	2.0	1.8	14.3	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.8	0.7	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	1.3	1.2	12.2	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.8	0.7	17.5	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	0.8	0.7	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	12.0	11.0	8.7	0% - 20%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.8	1.6	8.2	No Limit
ES2131281-002	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.8	1.0	19.1	No Limit

 Page
 : 4 of 9

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

Project : ES8338 DSI

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyr	nuclear Aromatic Hyd	drocarbons (QC Lot: 3881241) - continued							
ES2131281-002	Anonymous	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.8	1.0	20.2	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	0.6	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.6	2.6	47.6	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarbo	ons (QC Lot: 3880915)							
ES2131757-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2131798-011	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarbo	ons (QC Lot: 3881240)							
ES2131798-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2131281-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocar	bons - NEPM 2013 Fractions (QC Lot: 3880915)							
ES2131757-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2131798-011	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocar	bons - NEPM 2013 Fractions (QC Lot: 3881240)							
ES2131798-005	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	100	100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2131281-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3880915)								
ES2131757-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						

Page : 5 of 9 ES2131821 Work Order

Sub-Matrix: SOIL						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 3880915) - continued								
ES2131757-001	Anonymous	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2131798-011	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

 Page
 : 6 of 9

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

Project : ES8338 DSI

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
G005(ED093)T: Total Metals by ICP-AES (QCL	ot: 3887401)								
G005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	90.9	88.0	113	
G005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	97.6	70.0	130	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	99.7	68.0	132	
G005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	98.9	89.0	111	
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	95.3	82.0	119	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	92.0	80.0	120	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.0	66.0	133	
EG035T: Total Recoverable Mercury by FIMS (0	QCLot: 3887402)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	97.7	70.0	125	
:P066: Polychlorinated Biphenyls (PCB) (QCLo	ot: 3881242)								
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	92.8	62.0	126	
P068A: Organochlorine Pesticides (OC) (QCL	ot: 3881239)								
:P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.3	69.0	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65.0	117	
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	67.0	119	
:P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	68.0	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.2	65.0	117	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.2	67.0	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	85.9	69.0	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	85.8	62.0	118	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.4	63.0	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.4	66.0	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.7	64.0	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	84.3	66.0	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.7	67.0	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.0	67.0	123	
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	69.0	115	
:P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.5	69.0	121	
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	56.0	120	
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	62.0	124	
:P068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	80.0	66.0	120	
P068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	64.0	122	
P068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	76.7	54.0	130	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (OCI ot: 3881241)								

Page : 7 of 9 Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 3881241) - co	ontinued							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	91.0	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	84.4	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.3	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	87.9	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	90.6	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	93.8	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	91.4	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	90.0	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	77.8	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	91.4	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	77.6	68.0	116	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	88.7	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	86.6	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	77.9	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	79.7	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	84.4	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	880915)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	86.0	68.4	128	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	881240)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	106	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	104	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	99.3	71.0	129	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	_ot: 3880915)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	87.2	68.4	128	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3881240)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	107	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	101	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	96.2	63.0	131	
EP080: BTEXN (QCLot: 3880915)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	87.4	62.0	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	84.6	67.0	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	84.1	65.0	117	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	82.0	66.0	118	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	81.3	68.0	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	86.6	63.0	119	

Page : 8 of 9
Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
G005(ED093)T: To	otal Metals by ICP-AES (QCLot: 3887401)									
ES2131757-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	92.8	70.0	130			
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.5	70.0	130			
		EG005T: Chromium	7440-47-3	50 mg/kg	92.9	68.0	132			
		EG005T: Copper	7440-50-8	250 mg/kg	94.0	70.0	130			
		EG005T: Lead	7439-92-1	250 mg/kg	83.5	70.0	130			
		EG005T: Nickel	7440-02-0	50 mg/kg	91.5	70.0	130			
		EG005T: Zinc	7440-66-6	250 mg/kg	94.6	66.0	133			
G035T: Total Red	coverable Mercury by FIMS (QCLot: 3887402)									
ES2131757-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	101	70.0	130			
P066: Polychlorin	nated Biphenyls (PCB) (QCLot: 3881242)									
ES2131281-002	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	93.3	70.0	130			
P068A: Organoch	nlorine Pesticides (OC) (QCLot: 3881239)									
S2131281-002	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	83.4	70.0	130			
		EP068: Heptachlor	76-44-8	0.5 mg/kg	103	70.0	130			
		EP068: Aldrin	309-00-2	0.5 mg/kg	86.4	70.0	130			
		EP068: Dieldrin	60-57-1	0.5 mg/kg	80.9	70.0	130			
		EP068: Endrin	72-20-8	2 mg/kg	85.2	70.0	130			
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	76.3	70.0	130			
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 388	31241)								
ES2131281-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	90.4	70.0	130			
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	96.0	70.0	130			
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3880915)									
S2131757-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	111	70.0	130			
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3881240)									
S2131281-002	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	110	73.0	137			
		EP071: C15 - C28 Fraction		3100 mg/kg	114	53.0	131			
		EP071: C29 - C36 Fraction		2060 mg/kg	117	52.0	132			
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fract	tions (QCLot: 3880915)								
ES2131757-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	117	70.0	130			
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fract	tions (QCLot: 3881240)								
ES2131281-002	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	114	73.0	137			
		EP071: >C16 - C34 Fraction		4320 mg/kg	116	53.0	131			

Page : 9 of 9
Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

Sub-Matrix: SOIL				Ma	ntrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI	_ot: 3881240) - continued					
ES2131281-002	Anonymous	EP071: >C34 - C40 Fraction		890 mg/kg	99.6	52.0	132
EP080: BTEXN (Q	CLot: 3880915)						
ES2131757-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	80.8	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	86.2	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	82.3	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	90.0	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	79.8	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	81.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2131821** Page : 1 of 6

Client : AARGUS PTY LTD : Environmental Division Sydney

Contact: MR MARK KELLYTelephone: +61-2-8784 8555Project: ES8338 DSIDate Samples Received: 01-Sep-2021Site: GreenacreIssue Date: 08-Sep-2021

Sampler : SBS No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6
Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: × = Holding time breach ; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) SS1. SS2	31-Aug-2021				07-Sep-2021	14-Sep-2021	1
EA200; AS 4964 - 2004 Identification of Asbestos in Soils							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200)							
SS1, SS2	31-Aug-2021				02-Sep-2021	27-Feb-2022	✓
EA200N: Asbestos Quantification (non-NATA)							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200N) SS1, SS2	31-Aug-2021				02-Sep-2021	27-Feb-2022	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
SS1, SS2	31-Aug-2021	07-Sep-2021	27-Feb-2022	✓	07-Sep-2021	27-Feb-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) SS1. SS2	31-Aug-2021	07-Sep-2021	28-Sep-2021	✓	08-Sep-2021	28-Sep-2021	1
	31-Aug-2021	07-3ep-2021	20 OCP 2021		00-0ep-2021	20 000 2021	V
EP066: Polychlorinated Biphenyls (PCB) Soil Glass Jar - Unpreserved (EP066)					I		
SS1, SS2	31-Aug-2021	03-Sep-2021	14-Sep-2021	✓	07-Sep-2021	13-Oct-2021	1
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068)							
SS1, SS2	31-Aug-2021	03-Sep-2021	14-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))			44.0 0004			40.0.4.0004	
SS1, SS2	31-Aug-2021	03-Sep-2021	14-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080)	31-Aug-2021	02-Sep-2021	14-Sep-2021	,	07-Sep-2021	14-Sep-2021	
SS1, SS2 Soil Glass Jar - Unpreserved (EP071)	31-Aug-2021	02-3ep-2021	14-3ep-2021	✓	υ <i>τ-</i> 3ep-2021	14-36ρ-2021	√
SS1, SS2	31-Aug-2021	03-Sep-2021	14-Sep-2021	1	07-Sep-2021	13-Oct-2021	1

Page : 3 of 6
Work Order : ES2131821

Client : AARGUS PTY LTD
Project : ES8338 DSI

Matrix: **SOIL**Evaluation: × = Holding time breach; ✓ = Within holding time.

Matrix. 301L					Lvaluation	. • – Holding time	breach, • - with	ir noluling time	
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocart	bons - NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP080)									
SS1,	SS2	31-Aug-2021	02-Sep-2021	14-Sep-2021	✓	07-Sep-2021	14-Sep-2021	✓	
Soil Glass Jar - Unpreserved (EP071)									
SS1,	SS2	31-Aug-2021	03-Sep-2021	14-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓	
EP080: BTEXN									
Soil Glass Jar - Unpreserved (EP080)									
SS1,	SS2	31-Aug-2021	02-Sep-2021	14-Sep-2021	✓	07-Sep-2021	14-Sep-2021	✓	

 Page
 : 4 of 6

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

Project : ES8338 DSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

		Evaluation: Quality Control requestoy not					to the contraction of the contra
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
							•

 Page
 : 5 of 6

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

 Project
 : ES8338 DSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Asbestos Classification and Quantitation per NEPM 2013	* EA200N	SOIL	Asbestos Classification and Quantitation per NEPM with Confirmation of Identification by AS 4964 - Gravimetric determination of Asbestos Containing Material, Fibrous Asbestos, Asbestos Fines and sample weight and calculation of percentage concentrations per NEPM protocols. Asbestos (Fines and Fibrous FA+AF) is reported as the equivalent weight in the sample received after accounting for sub-sampling (where applicable for the <7mm and/or <2mm fractions).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions

 Page
 : 6 of 6

 Work Order
 : ES2131821

 Client
 : AARGUS PTY LTD

Project : ES8338 DSI

Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2131821 Work Order

: AARGUS PTY LTD Client Laboratory : Environmental Division Sydney

Contact : MR MARK KELLY Contact : Customer Services ES

Address : PO BOX 398 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

E-mail F-mail : ALSEnviro.Sydney@ALSGlobal.com : mark.kelly@aargus.net

Telephone : +61-2-8784 8555 Telephone : 1300137038 Facsimile **Facsimile** : 1300136038 : +61-2-8784 8500

Project : ES8338 DSI Page · 1 of 3

DRUMMOYNE NSW, AUSTRALIA 2047

Order number Quote number : EB2017AARGUS0001 (EN/222) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

· Greenacre Sampler · SBS

Dates

Date Samples Received : 01-Sep-2021 22:15 Issue Date : 02-Sep-2021 Scheduled Reporting Date : 08-Sep-2021 Client Requested Due

Date

: 08-Sep-2021

Delivery Details

Mode of Delivery Security Seal · Carrier : Not Available

No of coolers/hoxes • 1 Temperature : 12.6'C - Ice Bricks present

Receipt Detail No. of samples received / analysed . 2/2

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 02-Sep-2021

Page

2 of 3 ES2131821 Amendment 0 Work Order Client : AARGUS PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation sbestos in Soils - (<1kg samples ONLY) tasks, that are included in the package. SOIL - S-08 TRH/BTEXN/PAH/OC/PCB/8 Metals If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component OIL - EA055-103 **Joisture Content EA200N** Matrix: SOIL Sample ID Laboratory sample Sampling date / ID time ES2131821-001 31-Aug-2021 00:00 SS1 ES2131821-002 31-Aug-2021 00:00

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 02-Sep-2021

Page

3 of 3 ES2131821 Amendment 0 Work Order Client : AARGUS PTY LTD

Requested Deliverables

rioquosica Bonvorabios		
ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	anika@aargus.net
CYNTHIA		
 *AU Certificate of Analysis - NATA (COA) 	Email	cynthia@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	cynthia@aargus.net
 - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	cynthia@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	cynthia@aargus.net
- A4 - AU Tax Invoice (INV)	Email	cynthia@aargus.net
- Chain of Custody (CoC) (COC)	Email	cynthia@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	cynthia@aargus.net
- EDI Format - XTab (XTAB)	Email	cynthia@aargus.net
Gokul		
 *AU Certificate of Analysis - NATA (COA) 	Email	gokul@aargus.net
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	gokul@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	gokul@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	gokul@aargus.net
- A4 - AU Tax Invoice (INV)	Email	gokul@aargus.net
- Chain of Custody (CoC) (COC)	Email	gokul@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	gokul@aargus.net
- EDI Format - XTab (XTAB)	Email	gokul@aargus.net
MARK KELLY		
 *AU Certificate of Analysis - NATA (COA) 	Email	mark.kelly@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mark.kelly@aargus.net
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mark.kelly@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mark.kelly@aargus.net
- A4 - AU Tax Invoice (INV)	Email	mark.kelly@aargus.net
- Chain of Custody (CoC) (COC)	Email	mark.kelly@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	mark.kelly@aargus.net
- EDI Format - XTab (XTAB)	Email	mark.kelly@aargus.net
NINGYE ZHANG		
 *AU Certificate of Analysis - NATA (COA) 	Email	ningye@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ningye@aargus.net
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ningye@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ningye@aargus.net
- A4 - AU Tax Invoice (INV)	Email	ningye@aargus.net
- Chain of Custody (CoC) (COC)	Email	ningye@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	ningye@aargus.net
- EDI Format - XTab (XTAB)	Email	ningye@aargus.net

AARGUS PTY LTD

6 Carter Street Lidcombe, NSW 2141

P O Box 398 Tel: 1300 137 038 DRUMMÖYNE NSW 1470 Fax: 1300 136 038

Laboratory Test Request / Chain of Custody Record

Email reports: cynthla@aargus.net; gokul@aargus.net; mark.kelly@aargus.net;ningye@aargus.net
Email invoices: anika@aargus.net; cynthla@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; ningye@aargus.net

GV WP	Legend								PH:		:01
Water sample, glass bottle Water sample, plastic bottle Glass vial		SAAD	Name		SSZ	SST	Location	Samp	PH: 02 8784 8555 ATTN: Samples Receipt	SMITHFIELD, NSW 2164	ALS (Australian Laboratory Services) Environmental 277 - 289 Woodpark Road
bottle							Depth (m)	Sampling details		164	oratory Services Road
				Relinquished by	31.08.2021	31.08.2021	Date) Environmenta
	353	CEC	Signature	by	DSG, DSP	DSG, DSP	Soil	Samp	FAX:		
USG Undis DSG Distur OTH Other							water (Filled Air Up)	Sample type	02.8		
Undisturbed soil sample (glass ja Disturbed soil sample (glass jar) Other	1207.80.10	Date Const	7		~	×.	Metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn)		02 8784 8500		
DSP	Va				~	~	TPH & BTEX	Re	Project Manager:	Sampled By:	Sampling Date:
Disturbed soil sampi Test required Air sample, canister	7			,	\	<u> </u>	PAH	sults rec	nager:	ÿ.	Date:
d soil sample (small plastic bag) lired le, canister	3				Į,	<	8	quired k	M _X	SBS	31.08.2021
mall plastic					V	<	РСВ	y: WED			
bag)	18-24X							NESD/	Location:	Project:	Job No:
		Signature	L'eccived by	Received by				Results required by: WEDNESDAY, 8TH SEPTEMBER 2021	GREENACRE	DSI	ES8338
	0				\ \	<	Asbestos %w/w	BER 2021			-
[®] mole H ⁺ /tonne	14 22	Date		33	82	88	Analysis Suite(s)	;			ot
nne	71 017			1.00	YES	YES	KEEP SAMPLE?				-

Environmental Division Sydney
Work Order Reference
ES2131821

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET95822 / 99002 / 1 – 13 Your ref : ES8338 – DSI - Greenacre NATA Accreditation No: 14484

3 September 2021

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

Attn: Mr Mark Kelly

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Mark

Asbestos Identification

This report presents the results of thirteen samples out of twenty five samples, forwarded by Aargus Pty Ltd on 1 September 2021, for analysis for asbestos.

1.Introduction:Thirteen samples out of twenty five samples forwarded were examined and analysed for the presence of asbestos on 3 September 2021.

2. Methods:

The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF** (Asbestos Fines), **FA** (Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines.

3. Results: Sample No. 1. ASET95822 / 99002 / 1. ES8338 - BH1-0.3-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 577.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, timber char, sandstones and plant matter.

No asbestos detected.

Sample No. 2. ASET95822 / 99002 / 2. ES8338 - BH2-0.3-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 6.2 cm

Approximate total dry weight of soil = 761.0g.

The sample consisted of a mixture of clayish sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 3. ASET95822 / 99002 / 3. ES8338 - BH3-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm

Approximate total dry weight of soil = 492.0g.

The sample consisted of a mixture of clayish sandy soil, wood chips, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 4. ASET95822 / 99002 / 4. ES8338 - BH4-0.2-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 5.4 cm

Approximate total dry weight of soil = 664.0g.

The sample consisted of a mixture of sandy soil, sandstones, timber char, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 5. ASET95822 / 99002 / 5. ES8338 - BH5-0.2-0.5.

Approx dimensions 10.0 cm x 10.0 cm x 5.9 cm

Approximate total dry weight of soil = 713.0g.

The sample consisted of a mixture of clayish sandy soil, stones, wood chips, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 6. ASET95822 / 99002 / 6. ES8338 - BH6-0.2-0.6.

Approx dimensions 10.0 cm x 10.0 cm x 6.1 cm

Approximate total dry weight of soil = 756.0g.

The sample consisted of a mixture of sandy soil, sandstones, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 7. ASET95822 / 99002 / 7. ES8338 - BH7-0.3-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 7.6 cm

Approximate total dry weight of soil = 926.0g.

The sample consisted of a mixture of clayish sandy soil, stones, brick like material, sandstones, organic fibres and plant matter.

No asbestos detected.

Ω Sample No. 8. ASET95822 / 99002 / 8. ES8338 - BH8-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 4.5 cm

Approximate total dry weight of soil = 351.0g.

The sample consisted of a mixture of sandy soil, stones, paint flakes, wood chips, sandstones, glass pieces, organic fibres and plant matter.

No asbestos detected.

Sample No. 9. ASET95822 / 99002 / 9. ES8338 - BH9-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 7.0 cm

Approximate total dry weight of soil = 840.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 10. ASET95822 / 99002 / 10. ES8338 - BH10-0.3-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 8.3 cm

Approximate total dry weight of soil = 1102.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 11. ASET95822 / 99002 / 11. ES8338 - BH11-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm

Approximate total dry weight of soil = 561.0g.

The sample consisted of a mixture of clayish sandy soil, stones, sandstones, organic fibres and plant matter.

No asbestos detected.

Sample No. 12. ASET95822 / 99002 / 12. ES8338 - BH12-0.3-0.4.

Approx dimensions 10.0 cm x 10.0 cm x 7.7 cm

Approximate total dry weight of soil = 943.0g.

The sample consisted of a mixture of clayish sandy soil, stones, organic fibres, sandstones and plant matter.

No asbestos detected.

Sample No. 13. ASET95822 / 99002 / 13. ES8338 - BH13-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm

Approximate total dry weight of soil = 599.0g.

The sample consisted of a mixture of sandy soil, stones, sandstones, wood chips, organic fibres and plant matter.

No asbestos detected.

Reported by,

Jund

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier.

Approved Signatory

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.

[^] denotes loose fibres of relevant asbestos types detected in soil/dust.

^{*} denotes asbestos detected in ACM in bonded form.

#denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

 λ denotes samples that have been analysed only in accordance to AS 4964 – 2004. Ω Sample volume criteria of 500mL have not been satisfied.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET95822 / 99002 / 14 - 25 Your ref: ES8338 – DSI - Greenacre NATA Accreditation No: 14484

3 September 2021

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

Attn: Mr Mark Kelly

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Mark

Asbestos Identification

This report presents the results of twelve samples out of twenty five samples, forwarded by Aargus Pty Ltd on 1 September 2021, for analysis for asbestos.

1.Introduction:Twelve samples out of twenty five samples forwarded were examined and analysed for the presence of asbestos on 3 September 2021.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF**(Asbestos Fines), **FA**(Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results: Sample No. 14. ASET95822 / 99002 / 14. ES8338 - BH14-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 6.4 cm

Approximate total dry weight of soil = 643.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 15. ASET95822 / 99002 / 15. ES8338 - BH15-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 8.5 cm

Approximate total dry weight of soil = 853.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, fragments of plastic, wood chips and plant matter.

No asbestos detected.

Sample No. 16. ASET95822 / 99002 / 16. ES8338 - BH16-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 7.0 cm

Approximate total dry weight of soil = 704.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, shale and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 17. ASET95822 / 99002 / 17. ES8338 - BH17-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 7.0 cm

Approximate total dry weight of soil = 698.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 18. ASET95822 / 99002 / 18. ES8338 - BH18-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 6.3 cm

Approximate total dry weight of soil = 628.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, slag, wood chips and plant matter.

No asbestos detected.

Sample No. 19. ASET95822 / 99002 / 19. ES8338 - BH19-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 5.9 cm

Approximate total dry weight of soil = 585.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 20. ASET95822 / 99002 / 20. ES8338 - BH20-0.2-0.3.

Approx dimensions 10.0 cm x 10.0 cm x 8.2 cm

Approximate total dry weight of soil = 817.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, shale and plant matter.

No asbestos detected.

Sample No. 21. ASET95822 / 99002 / 21. ES8338 - BH21-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.7 cm

Approximate total dry weight of soil = 566.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, fragments of glass, plastic, wood chips and plant matter.

No asbestos detected.

Sample No. 22. ASET95822 / 99002 / 22. ES8338 - BH22-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm

Approximate total dry weight of soil = 598.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 23. ASET95822 / 99002 / 23. ES8338 - BH23-0.1-0.2.

Approx dimensions 10.0 cm x 10.0 cm x 7.3 cm

Approximate total dry weight of soil = 733.0g.

The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, fragments of cement, paint flakes, plastic, slag, wood chips and plant matter.

No asbestos detected.

Sample No. 24. ASET95822 / 99002 / 24. ES8338 - D1.

Approx dimensions 10.0 cm x 10.0 cm x 8.5 cm

Approximate total dry weight of soil = 850.0g.

The sample consisted of a mixture of clayish sandy soil, stones and plant matter.

No asbestos detected.

Sample No. 25. ASET95822 / 99002 / 25. ES8338 - D2.

Approx dimensions 10.0 cm x 10.0 cm x 7.4 cm Approximate total dry weight of soil = 743.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, glass, wood chips and plant matter.

No asbestos detected.

Reported by,

Janus

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

NATA

WORLD RECOGNISED

ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers:

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight/weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- # denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be

reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/fibre bundles are detected and reported that means they are larger handpicked fibres/fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

ASET95822/99002/1-25

AARGUS PTY LTD

Laboratory Test Request / Chain of Custody Record

6 Carter Street LIDCOMBE NSW 2141 P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038 Email to: cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; sara@aargus.net

TO:	ASET - Australian Sa	Safer Environme	nt & Technology F	≥ty Ltd, Sydney		Sampling Date:	31.08.202	21	Job No:	ES8338			of	
	Suite 710 / 90 George	ge Street	PO Box 1644			, -								
	HORNSBY, NSW 207	17	HORNSBY WES	ESTFIELD NSW 1635		Sampled By:	SBS		Project:	DSI				
H: TTN:	02 9987 2183 N: Samples Receipt			FAX: 02 9987 EMAIL aset@bi	B7 2151 Obigpond.net.au	Project Manager:	MK		Location:	GREENACRE	Ε			
		pling details		Sample type		Results re	equired by:	WEDNE	SDAY, 8	TH SEPTE	MBER 20	/21		
	Location	Depth (m)	Date	Soil Samples	Asbestos presence/absence	Asbestos %w/w						[KEI
	BH1	0.3-0.4	31.08.2021	DSP					+	+	1		1	YE
	BH2	0.3-0.4	31.08.2021	DSP								1		YE
	BH3	0.2-0.3	31.08.2021	DSP		V						1		YI
_	BH4	0.2-0.4	31.08.2021	DSP		✓								Y
_	BH5	0.2-0.5	31.08.2021	DSP		✓								Y
_	BH6	0.2-0.6	31.08.2021	DSP		✓						1		Y
_	BH7	0.3-0.4	31.08.2021	DSP		✓						1		Y
_	BH8	0-0.1	31.08.2021	DSP		-						1		Y
_	ВН9	0.2-0.3	31.08.2021	DSP		V						1		Y
_	BH10	0.3-0.4	31.08.2021	DSP		V								Y
_	BH11	0.2-0.3	31.08.2021	DSP		V			218.0	10 2 2 2 2 2 10 2	12 10			Y
	BH12	0.3-0.4	31.08.2021	DSP		V			N 50 G	92930	HB .			Y
_	BH13	0.2-0.3	31.08.2021	DSP					in)	20		1		Y
_	BH14	0.2-0.3	31.08.2021	DSP		V			110	1 SEP ZUZ	121			Y
	BH15	0.1-0.2	31.08.2021	DSP	<u> </u>									Y
_	BH16	0.2-0.3	31.08.2021	DSP	1	V								Y
_	BH17	0.1-0.2	31.08.2021	DSP		7			BY:		0000000			Y
	BH18	0.1-0.2	31.08.2021	DSP	4									Y
	BH19	0.1-0.2	31.08.2021	DSP	4	V								Y
_	BH20	0.2-0.3	31.08.2021	DSP	1	V							,	Y
	BH21	0-0.1	31.08.2021	DSP		7								Y
_	BH22	0.1-0.2	31.08.2021	DSP						V			 ,	Y
	BH23	0.1-0.2	31.08.2021	DSP									4'	Y
	D1	-	31.08.2021	DSP	+	-						·	 '	Y
	D2	-	31.08.2021	DSP	+	-			+		1		1	<u> </u>
		1	Relinquished t	by					Rec/	eived by		Kala		
	Name			Signature	Date	Nam	me			gnature		,	Date	
	Saad			SBS	01.09.2021							1119		5h
egend VG VP	nd: Water sample, glass b Water sample, plastic				urbed soil sample (glass jar) bed soil sample (glass jar)		rbed soil sample (sr required	small plastic baç	g)		1		[@] mole H ⁺ /t	
GV	Glass vial			OTH Other	, ,		mple, canister				/			

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: - ALL INVOICES/SRA - Mark Kelly

Report 821614-W

Project name DSI GREENACRE

Project ID ES8338
Received Date Sep 02, 2021

Client Sample ID			GW1	GW2	GW5	GWD1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Se05246	S21-Se05247	S21-Se05248	S21-Se05249
Date Sampled			Sep 02, 2021	Sep 02, 2021	Sep 02, 2021	Sep 02, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	•					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
ВТЕХ		-				
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	89	91	94	92
Polycyclic Aromatic Hydrocarbons (Trace level)		-				
Acenaphthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b&j)fluoranthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(k)fluoranthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Chrysene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Dibenz(a.h)anthracene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Fluoranthene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Fluorene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Indeno(1.2.3-cd)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001

Client Sample ID Sample Matrix Eurofins Sample No.			GW1 Water S21-Se05246	GW2 Water S21-Se05247	GW5 Water S21-Se05248	GWD1 Water S21-Se05249
Date Sampled			Sep 02, 2021	Sep 02, 2021	Sep 02, 2021	Sep 02, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons (Trace level)						
Naphthalene	0.00001	mg/L	< 0.00001	0.00005	< 0.00001	< 0.00001
Phenanthrene	0.00001	mg/L	< 0.00001	0.00014	< 0.00001	< 0.00001
Pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Total PAH*	0.00001	mg/L	< 0.00001	0.00019	< 0.00001	< 0.00001
2-Fluorobiphenyl (surr.)	1	%	94	77	58	65
p-Terphenyl-d14 (surr.)	1	%	76	126	80	133
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.001	0.11	0.005	0.002
Cadmium (filtered)	0.0002	mg/L	0.0003	< 0.0002	0.0005	0.0003
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	< 0.001	0.001	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.025	0.011	0.006
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID			TRIP SPIKE	TRIP BLANK
Sample Matrix			Water	Water
Eurofins Sample No.			S21-Se05250	S21-Se05251
Date Sampled			Sep 02, 2021	Sep 02, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	0.02	mg/L	-	< 0.02
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01
TRH C6-C10	0.02	mg/L	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	< 0.02
ВТЕХ				
Benzene	0.001	mg/L	-	< 0.001
Toluene	0.001	mg/L	-	< 0.001
Ethylbenzene	0.001	mg/L	-	< 0.001
m&p-Xylenes	0.002	mg/L	-	< 0.002
o-Xylene	0.001	mg/L	-	< 0.001
Xylenes - Total*	0.003	mg/L	-	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	91
TRH C6-C10	1	%	88	_
Total Recoverable Hydrocarbons				
Naphthalene	1	%	120	-
TRH C6-C9	1	%	91	-
BTEX	'	•		
Benzene	1	%	120	-
Ethylbenzene	1	%	130	-
m&p-Xylenes	1	%	130	-
p-Xylene	1	%	120	-
Toluene	1	%	120	-
Xylenes - Total	1	%	120	-
4-Bromofluorobenzene (surr.)	1	%	88	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 06, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 06, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons (Trace level)	Melbourne	Sep 06, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water (trace)			
Metals M8 filtered	Sydney	Sep 02, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Recoverable Hydrocarbons	Sydney	Sep 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 1/21 Smallwood Place 46-48 Banksia Road Murarrie QLD 4172 Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Address:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

ES8338

Order No.: Report #:

821614

Brisbane

Phone: 02 9568 6159 02 9566 6179 Fax:

Sep 2, 2021 8:30 PM Due: Sep 7, 2021

Priority: 3 Dav

Contact Name: - ALL INVOICES/SRA - Mark Kelly

		Sa	mple Detail			BTEXN and Volatile TRH	BTEXN and Volatile TRH	Eurofins Suite B7 (filtered metals/PAH trace level)				
Melb			Х									
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х				
Bris	bane Laborator	y - NATA Site #	20794									
Perti	h Laboratory - I	NATA Site # 237	36									
May	field Laboratory	/ - NATA Site # :	25079									
Exte	rnal Laboratory	<u> </u>										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GW1	Sep 02, 2021		Water	S21-Se05246			Х				
2			Х									
3	S21-Se05248			Х								
4												
5	TRIP SPIKE	Sep 02, 2021		Water	S21-Se05250		Х					
6	6 TRIP BLANK Sep 02, 2021 Water S21-Se05251											
Test	Counts					1	1	4				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons (Trace level)					
Acenaphthene	mg/L	< 0.00001	0.00001	Pass	
Acenaphthylene	mg/L	< 0.00001	0.00001	Pass	
Anthracene	mg/L	< 0.00001	0.00001	Pass	
Benz(a)anthracene	mg/L	< 0.00001	0.00001	Pass	
Benzo(a)pyrene	mg/L	< 0.00001	0.00001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.00001	0.00001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Chrysene	mg/L	< 0.00001	0.00001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00001	0.00001	Pass	
Fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Fluorene	mg/L	< 0.00001	0.00001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00001	0.00001	Pass	
Naphthalene	mg/L	< 0.00001	0.00001	Pass	
Phenanthrene	mg/L	< 0.00001	0.00001	Pass	
Pyrene	mg/L	< 0.00001	0.00001	Pass	
Method Blank	1 3				
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	102	70-130	Pass	
TRH C10-C14	%	119	70-130	Pass	
Naphthalene	%	106	70-130	Pass	

Test			Units	Result 1	Acceptan Limits	ce Pass Limits	Qualifying Code
TRH C6-C10			%	101	70-130	Pass	
TRH >C10-C16			%	118	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	92	70-130	Pass	
Toluene			%	104	70-130	Pass	
Ethylbenzene			%	108	70-130	Pass	
m&p-Xylenes			%	112	70-130	Pass	
o-Xylene			%	110	70-130	Pass	
Xylenes - Total*			%	111	70-130	Pass	
LCS - % Recovery						·	
Polycyclic Aromatic Hydrocarbons	(Trace level)						
Acenaphthene			%	106	70-130	Pass	
Acenaphthylene			%	94	70-130	Pass	
Anthracene			%	92	70-130	Pass	
Benz(a)anthracene			%	76	70-130	Pass	
Benzo(a)pyrene			%	88	70-130	Pass	
Benzo(b&j)fluoranthene			%	127	70-130	Pass	
Benzo(g.h.i)perylene			%	96	70-130	Pass	
Benzo(k)fluoranthene			%	117	70-130	Pass	
Chrysene			%	88	70-130	Pass	
Dibenz(a.h)anthracene			%	88	70-130	Pass	
Fluoranthene			%	123	70-130	Pass	
Fluorene			%	85	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	89	70-130	Pass	
Naphthalene			%	100	70-130	Pass	
Phenanthrene			%	94	70-130	Pass	
Pyrene			%	129	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic (filtered)			%	99	80-120	Pass	
Cadmium (filtered)			%	97	80-120	Pass	
Chromium (filtered)			%	99	80-120	Pass	
Copper (filtered)			%	96	80-120	Pass	
Lead (filtered)			%	103	80-120	Pass	
Mercury (filtered)			%	87	80-120	Pass	
Nickel (filtered)			%	97	80-120	Pass	
Zinc (filtered)			%	93	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptan Limits	ce Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C10-C14	P21-Se00977	NCP	%	121	70-130	Pass	
TRH >C10-C16	P21-Se00977	NCP	%	124	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic (filtered)	S21-Au54426	NCP	%	98	75-125	Pass	
Cadmium (filtered)	S21-Au54426	NCP	%	94	75-125	Pass	
Chromium (filtered)	S21-Au54426	NCP	%	86	75-125	Pass	
Copper (filtered)	S21-Se08982	NCP	%	80	75-125	Pass	
Lead (filtered)	S21-Au54426	NCP	%	91	75-125	Pass	
Mercury (filtered)	S21-Se08982	NCP	%	85	75-125	Pass	
Nickel (filtered)	S21-Se08982	NCP	%	81	75-125	Pass	
Zinc (filtered)	S21-Se08982	NCP	%	81	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Se08976	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M21-Se06457	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M21-Se06457	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M21-Se06457	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	S21-Se08976	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Se08976	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	M21-Se06457	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M21-Se06457	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M21-Se06457	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	S21-Se08976	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Se08976	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Se08976	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Se08976	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S21-Se08976	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-Se08976	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S21-Au58557	NCP	mg/L	< 0.001	0.001	9.0	30%	Pass	
Cadmium (filtered)	S21-Au58557	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Au58557	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S21-Au58557	NCP	mg/L	0.002	0.001	17	30%	Pass	
Lead (filtered)	S21-Au58557	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S21-Au58557	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Au58557	NCP	mg/L	0.006	0.006	7.0	30%	Pass	
Zinc (filtered)	S21-Au58557	NCP	mg/L	0.018	0.016	10	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Asim Khan Analytical Services Manager John Nguyen Senior Analyst-Metal (NSW) Joseph Edouard Senior Analyst-Organic (VIC) Roopesh Rangarajan Senior Analyst-Volatile (NSW) Vivian Wang Senior Analyst-Volatile (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3. Building F 16 Mars Road

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Aargus Pty Ltd

Contact name:

- ALL INVOICES/SRA - Mark Kelly

Project name:

DSI GREENACRE

Project ID:

ES8338

Turnaround time: Date/Time received 3 Day Sep 2, 2021 8:30 PM

Eurofins reference

821614

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

No unpreserved bottle received, metals analysis filtered from the total metals bottle as instructed. Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Asim Khan on phone: or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to - ALL INVOICES/SRA - Mark Kelly - mark.kelly@aargus.net.

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261 Site # 1254
 Phone : +61 2 **

Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe

NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821614

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Received: Sep 2, 2021 8:30 PM

Due: Sep 7, 2021 Priority: 3 Day

Contact Name: - ALL INVOICES/SRA - Mark Kelly

New Zealand

		Sai	mple Detail			BTEXN and Volatile TRH	BTEXN and Volatile TRH	Eurofins Suite B7 (filtered metals/PAH trace level)				
Melb	Melbourne Laboratory - NATA Site # 1254											
		- NATA Site # 1				Х	Х	Х				
Brist	oane Laborator	y - NATA Site #	20794									
		NATA Site # 237										
		· - NATA Site # 2	25079									
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GW1	Sep 02, 2021		Water	S21-Se05246			Х				
2												
3			Х									
4	GWD1	S21-Se05249			Х							
5	TRIP SPIKE	Sep 02, 2021		Water	S21-Se05250		Х					
6	6 TRIP BLANK Sep 02, 2021 Water S21-Se05251											
Test	Counts					1	1	4				

AARGUS PTY LTD 6 Carter Street

Laboratory Test Request / Chain of Custody Record

WG WP	Saad	Name	Relingu									PH:		10:
Water sample, glass bottle Water sample, plastic bottle			Relinquished by	TripBlank	TripSpike	GWD1	GW5	GW2	GW1	Location	Samp	028215 6222	16 MARS ROAD LANE COVE WEST NSW 2066	MGT EUROFINS UNIT F3, BUILDING F
bottle										Depth (m)	Sampling details		NSW 2066	
				02.09.2021	02.09.2021	02.09.2021	02.09.2021	02.09.2021	02.09.2021	Date				
DSG DSG	SBS	Signature		Vial	Vial	WG, WP, Vial	WG, WP, Vial	WG, WP, Vial	WG, WP, Vial	Soil Water (Filled Up)	Sample type	FAX: 02 9420 2977		
Undistu						Vial	Vial	Vial	Vial	Air		0 2977		
Undisturbed soil sample (glass jr. DSP Disturbed soil sample (glass jar)	02.09.2021	Date				•	~	~		PLEASE FILTER IN THE LAB Metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn)		Project	Sampled By:	Sampli
ğ `Ÿ	(The	Na		Please test for	!	~	~	•	•	o, Ni, BTEXN	Res	Project Manager:	ed By:	Sampling Date:
Disturbed soil sample Test required	whe	Name		test for TRH		~	~	\ \	•	TRACE PAH	ults requir			
Disturbed soil sample (small plastic bag) Test required Air sample capitator				TRH F1 and BTEX							ed by: WED	MX	SBS	02.09.2021
stic bag)	6	Sig	Received by	×							NESDAY, 8TI	Location:	Project:	Job No:
	7	Signature	d by								Results required by: WEDNESDAY, 8TH SEPTEMBER 2021	GREENACRE	DSI	ES8338
[®] mı	2									Ş.A.	ı			
[®] mole H ⁺ /tonne	19	Date				В6	В6	B6		Analysis Suite(s)				
				YES	YES	YES	YES	YES	YES	KEEP SAMPLE?				9

821614

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: - ALL INVOICES/SRA - Mark Kelly

Report 821278-W

Project name DSI GREENACRE

Project ID ES8338
Received Date Sep 01, 2021

Client Sample ID			RINSATE
Sample Matrix			Water
Eurofins Sample No.			S21-Se02181
Date Sampled			Aug 31, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
ВТЕХ			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	76
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001

Report Number: 821278-W

Client Sample ID			RINSATE
Sample Matrix			Water
Eurofins Sample No.			S21-Se02181
Date Sampled			Aug 31, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	88
p-Terphenyl-d14 (surr.)	1	%	60
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Testing Site Sydney	Extracted Sep 03, 2021	Holding Time 7 Days
Sydney	Sep 01, 2021	7 Days
Sydney	Sep 01, 2021	14 Days
Sydney	Sep 03, 2021	7 Days
Sydney	Sep 03, 2021	7 Days
Sydney	Sep 06, 2021	180 Days
	Sydney Sydney Sydney Sydney Sydney	Sydney Sep 03, 2021 Sydney Sep 01, 2021 Sydney Sep 01, 2021 Sydney Sep 03, 2021 Sydney Sep 03, 2021

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Contact Name:

Received:

Priority:

Due:

 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

- ALL INVOICES/SRA - Mark Kelly

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Address:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Eurofins Analytical Services Manager : Asim Khan

New Zealand

Sep 1, 2021 7:23 PM

Sep 8, 2021

5 Day

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254									Х			
Sydi	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - I	NATA Site # 237	36												
May	field Laboratory	/ - NATA Site # :	25079												
Exte	rnal Laboratory	<u>'</u>			_										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH1 0.3-0.4	Aug 31, 2021		Soil	S21-Se02136					Х	Х		Х		
2	BH1 0.5-0.6	Aug 31, 2021		Soil	S21-Se02137				Х		Х				
3	BH2 0.3-0.4	Aug 31, 2021		Soil	S21-Se02138					Х	Х		Х		
4	BH3 0.2-0.3	Aug 31, 2021		Soil	S21-Se02139						Х		Х		
5	BH3 0.6-0.7	Aug 31, 2021		Soil	S21-Se02140	Х		Х	Х		Х	Х			
6	BH4 0.2-0.4	Aug 31, 2021		Soil	S21-Se02141					Х	Х		Х		
7	BH4 0.9-1.0	Aug 31, 2021		Soil	S21-Se02142				Х		Х				
8	BH5 0.2-0.5	Aug 31, 2021		Soil	S21-Se02143					Х	Х		Х		
9	BH5 0.4-0.5	Aug 31, 2021		Soil	S21-Se02144				Χ		Х				

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079
 Auckland
 Christ

 35 O'Rorke Road
 43 De

 Penrose, Auckland 1061
 Rolles

 Phone: +64 9 526 45 51
 Phone

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Due: Sep 8, 2021 Priority: 5 Day

Contact Name: - ALL INVOICES/SRA - Mark Kelly

New Zealand

IANZ # 1327

			mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	oourne Laborate											X			<u> </u>
	ney Laboratory						Х	Х	Х	Х	Х	X	Х	Х	X
	bane Laborator					Х									\vdash
	h Laboratory - N														\vdash
_	field Laboratory		25079												
	ernal Laboratory		Γ	I	Taa										\vdash
10	BH6 0.2-0.6	Aug 31, 2021		Soil	S21-Se02145					Х	Х		Х		\vdash
11	BH7 0.3-0.4	Aug 31, 2021		Soil	S21-Se02146					Х	Х		Х		\vdash
12	BH7 0.8-0.9	Aug 31, 2021		Soil	S21-Se02147				Х		Х				\vdash
13	BH8 0.0-0.1	Aug 31, 2021		Soil	S21-Se02148					Х	Х		Х		\vdash
14	BH8 0.3-0.4	Aug 31, 2021		Soil	S21-Se02149				Х		Х				\square
15	BH9 0.2-0.3	Aug 31, 2021		Soil	S21-Se02150						Х		Х		
16	BH10 0.3-0.4	Aug 31, 2021		Soil	S21-Se02151					Х	Х		Х		
17	BH10 0.4-0.5	Aug 31, 2021		Soil	S21-Se02152				Х		Х				
18	BH11 0.2-0.3	Aug 31, 2021		Soil	S21-Se02153						Х		Х		
19	BH12 0.3-0.4	Aug 31, 2021		Soil	S21-Se02154						Х		Х		
20	BH12 0.5-0.6	Aug 31, 2021		Soil	S21-Se02155	Х		Х	Х		Х	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

- ALL INVOICES/SRA - Mark Kelly

Sep 1, 2021 7:23 PM

Sep 8, 2021

5 Day

Eurofins Analytical Services Manager: Asim Khan

New Zealand

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Aargus Pty Ltd

Address: 6 Carter Street Lidcombe

NSW 2141

Project Name:

DSI GREENACRE

Project ID:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Priority:

Contact Name:

Received:

Due:

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
-	ourne Laborate											Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator					Х									
-	h Laboratory - N														
	field Laboratory		25079												
	rnal Laboratory	1		1											
21	BH13 0.2-0.3	Aug 31, 2021		Soil	S21-Se02156					Х	Х		Х		
22	BH13 0.5-0.6	Aug 31, 2021		Soil	S21-Se02157				Х		Х				
23	BH14 0.2-0.3	Aug 31, 2021		Soil	S21-Se02158					Х	Х		Х		
24	BH14 0.9-1.0	Aug 31, 2021		Soil	S21-Se02159				Х		Х				
25	BH15 0.1-0.2	Aug 31, 2021		Soil	S21-Se02160						Х		Х		
26	BH15 0.6-0.7	Aug 31, 2021		Soil	S21-Se02161				Χ		Х				
27	BH16 0.2-0.3	Aug 31, 2021		Soil	S21-Se02162						Х		Х		
28	BH16 0.5-0.6	Aug 31, 2021		Soil	S21-Se02163				Х		Х				
29	BH17 0.1-0.2	Aug 31, 2021		Soil	S21-Se02164						Х		Х		
30	BH17 0.9-1.0	Aug 31, 2021		Soil	S21-Se02165				Х		Х				
31	BH18 0.1-0.2	Aug 31, 2021		Soil	S21-Se02166						Х		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 1

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 New Zealand

Auckland
35 O'Rorke Road
Penrose, Auckland 1061

Sep 1, 2021 7:23 PM Sep 8, 2021

- ALL INVOICES/SRA - Mark Kelly

Phone: +64 9 526 45 51

IANZ # 1327

5 Day

Eurofins Analytical Services Manager: Asim Khan

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Contact Name:

Received:

Priority:

Due:

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site	# 1254									Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
-	bane Laborator	•				Х									
	h Laboratory - N														
	field Laboratory		25079												
	rnal Laboratory	1		_											
32	BH18 0.8-0.9	Aug 31, 2021		Soil	S21-Se02167				Х		Х				
33	BH19 0.1-0.2	Aug 31, 2021		Soil	S21-Se02168						Х		Х		
34	BH19 0.6-0.7	Aug 31, 2021		Soil	S21-Se02169	Х		Х	Х		Х	Х			
35	BH20 0.2-0.3	Aug 31, 2021		Soil	S21-Se02170						Х		Х		
36	BH20 0.5-0.6	Aug 31, 2021		Soil	S21-Se02171				Х		Х				
37	BH21 0.0-0.1	Aug 31, 2021		Soil	S21-Se02172						Х		Х		
38	BH22 0.1-0.2	Aug 31, 2021		Soil	S21-Se02173						Х		Х		
39	BH22 0.6-0.7	Aug 31, 2021		Soil	S21-Se02174				Х		Х				
40	BH23 0.1-0.2	Aug 31, 2021		Soil	S21-Se02175						Х		Х		
41	D1	Aug 31, 2021		Soil	S21-Se02176					Х	Х		Х		
42	D2	Aug 31, 2021		Soil	S21-Se02177					Х	Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159 Fax:

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

New Zealand

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site	# 1254									Х			
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - I	NATA Site # 237	36												
May	field Laboratory	/ - NATA Site # :	25079												
Exte	rnal Laboratory	/													
43	TRIP SPIKE	Aug 31, 2021		Soil	S21-Se02178										Х
44	TRIP BLANK	Aug 31, 2021		Soil	S21-Se02180									Χ	
45	RINSATE	Aug 31, 2021		Water	S21-Se02181								Х		
46	BH2 0.5-0.6	Aug 31, 2021		Soil	S21-Se02182		Х								
47	BH6 0.5-0.6	Aug 31, 2021		Soil	S21-Se02183		Х								
48	BH9 0.5-0.6	Aug 31, 2021		Soil	S21-Se02184		Х								
49	BH11 0.4-0.5	Aug 31, 2021		Soil	S21-Se02185		Х								
50	BH21 0.4-0.5	Aug 31, 2021		Soil	S21-Se02186		Х								
51	BH23 0.6-0.7	Aug 31, 2021		Soil	S21-Se02187		Х								
Test	Counts					3	6	3	17	12	42	3	26	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	1 3				
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery			, , , , , , , , , , , , , , , , , , , ,		
Total Recoverable Hydrocarbons					
TRH C6-C9	%	74	70-130	Pass	
TRH C10-C14	%	103	70-130	Pass	
Naphthalene	%	87	70-130	Pass	

Test			Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
TRH C6-C10			%	76	70-130	Pass	
TRH >C10-C16			%	96	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	94	70-130	Pass	
Toluene			%	85	70-130	Pass	
Ethylbenzene			%	83	70-130	Pass	
m&p-Xylenes			%	72	70-130	Pass	
o-Xylene			%	93	70-130	Pass	
Xylenes - Total*			%	79	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbon	s						
Acenaphthene	-		%	77	70-130	Pass	
Acenaphthylene			%	76	70-130	Pass	
Anthracene			%	88	70-130	Pass	
Benz(a)anthracene			%	84	70-130	Pass	
Benzo(a)pyrene			%	90	70-130	Pass	
Benzo(b&j)fluoranthene			%	86	70-130	Pass	
			%	84	70-130	Pass	
Benzo(g.h.i)perylene							
Benzo(k)fluoranthene			%	100	70-130	Pass	
Chrysene			%	90	70-130	Pass	
Dibenz(a.h)anthracene			%	83	70-130	Pass	
Fluoranthene			%	83	70-130	Pass	
Fluorene			%	88	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	87	70-130	Pass	
Naphthalene			%	79	70-130	Pass	
Phenanthrene			%	84	70-130	Pass	
Pyrene			%	84	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	97	80-120	Pass	
Cadmium			%	90	80-120	Pass	
Chromium			%	87	80-120	Pass	
Copper			%	80	80-120	Pass	
Lead			%	88	80-120	Pass	
Mercury			%	97	80-120	Pass	
Nickel			%	83	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	N21-Au54895	NCP	%	87	70-130	Pass	
TRH C10-C14	S21-Se02293	NCP	%	103	70-130	Pass	
Naphthalene	N21-Au54895	NCP	%	89	70-130	Pass	
TRH C6-C10	N21-Au54895	NCP	%	87	70-130	Pass	
TRH >C10-C16	S21-Se02293	NCP	%	97	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	N21-Au54895	NCP	%	106	70-130	Pass	
Toluene	N21-Au54895	NCP	%	93	70-130	Pass	
Ethylbenzene	N21-Au54895	NCP	%	90	70-130	Pass	
m&p-Xylenes	N21-Au54895	NCP	%	77	70-130	Pass	
		NCP	%	99	70-130	Pass	
n-Xvlene	N21-A115/1805		-/n				
o-Xylene Xylenes - Total*	N21-Au54895 N21-Au54895	NCP	%	84	70-130	Pass	

Report Number: 821278-W

Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene Fluoranthene	S21-Se02291 S21-Se02291 N21-Au57056 S21-Se02291 S21-Se02291	NCP NCP NCP	%	Result 1 117			70-130	Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene	S21-Se02291 N21-Au57056 S21-Se02291	NCP		117			70-130	Dace	
Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene	N21-Au57056 S21-Se02291		%					1 000	i
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene	S21-Se02291	NCP	70	113			70-130	Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene			%	128			70-130	Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene	S21-Se02291	NCP	%	115			70-130	Pass	
Benzo(g.h.i)perylene Chrysene Dibenz(a.h)anthracene		NCP	%	125			70-130	Pass	
Chrysene Dibenz(a.h)anthracene	S21-Se02291	NCP	%	121			70-130	Pass	
Dibenz(a.h)anthracene	S21-Se02291	NCP	%	117			70-130	Pass	
` ′	S21-Se02291	NCP	%	128			70-130	Pass	
Fluoranthene	S21-Se02291	NCP	%	117			70-130	Pass	
i idorantiforio	S21-Se02291	NCP	%	121			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se02291	NCP	%	124			70-130	Pass	
Naphthalene	S21-Se02291	NCP	%	80			70-130	Pass	
Phenanthrene	S21-Se02291	NCP	%	126			70-130	Pass	
Pyrene	S21-Se02291	NCP	%	122			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Se00919	NCP	%	83			75-125	Pass	
Cadmium	S21-Se00919	NCP	%	90			75-125	Pass	
Chromium	S21-Se00919	NCP	%	89			75-125	Pass	
Copper	S21-Se00919	NCP	%	90			75-125	Pass	
Lead	S21-Se00919	NCP	%	91			75-125	Pass	
Mercury	S21-Se00919	NCP	%	99			75-125	Pass	
Nickel	S21-Se00919	NCP	%	93			75-125	Pass	
Zinc	S21-Se00919	NCP	%	85			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons		1		Result 1	Result 2	RPD		<u> </u>	
TRH C6-C9	N21-Se00723	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S21-Se02301	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-Se02301	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Se02301	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	N21-Se00723	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	N21-Se00723	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S21-Se02301	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S21-Se02301	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Se02301	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD		_	
Benzene	N21-Se00723	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	N21-Se00723	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	N21-Se00723	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	N21-Se00723	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	N21-Se00723	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	N21-Se00723	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate Polyovalia Aramatia Hydrocarbana				Dogult 4	Dogult 0	DDD			
Polycyclic Aromatic Hydrocarbons		NCD	ma/l	Result 1	Result 2	RPD -1	200/	Doco	
Acenaphthene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	i
Benz(a)anthracene		1	ma/l	_ 0.001	_0.001	-1	200/	Doco	ļ
	N21-Au57062 N21-Au57062	NCP NCP	mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30% 30%	Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	rbons			Result 1	Result 2	RPD			
Benzo(k)fluoranthene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	N21-Au57062	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se00918	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S21-Se00918	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Se00918	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S21-Se00918	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S21-Se00918	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Se00918	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Se00918	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S21-Se00918	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Report Number: 821278-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Analytical Services Manager Asim Khan Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 821278-W

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3, Building F 16 Mars Road

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Aargus Pty Ltd

Contact name:

- ALL INVOICES/SRA - Mark Kelly

Project name:

DSI GREENACRE

Project ID: Turnaround time: ES8338 5 Day

Date/Time received

Sep 1, 2021 7:23 PM

Eurofins reference

821278

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Asim Khan on phone: or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to - ALL INVOICES/SRA - Mark Kelly - mark.kelly@aargus.net.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159

02 9566 6179 Fax:

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

New Zealand

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254									Х			
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - I	NATA Site # 237	36												
_		y - NATA Site #	25079												
Exte	rnal Laboratory	<u>/</u>		1	•										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH1 0.3-0.4	Aug 31, 2021		Soil	S21-Se02136					Х	Х		Х		
2	BH1 0.5-0.6	Aug 31, 2021		Soil	S21-Se02137				Х		Х				
3	BH2 0.3-0.4	Aug 31, 2021		Soil	S21-Se02138					Х	Х		Х		
4	BH3 0.2-0.3	Aug 31, 2021		Soil	S21-Se02139						Х		Х		
5	BH3 0.6-0.7	Aug 31, 2021		Soil	S21-Se02140	Х		Х	Х		Х	Х			
6	BH4 0.2-0.4	Aug 31, 2021		Soil	S21-Se02141					Х	Х		Х		
7	BH4 0.9-1.0	Aug 31, 2021		Soil	S21-Se02142				Х		Х				
8	BH5 0.2-0.5	Aug 31, 2021		Soil	S21-Se02143					Х	Х		Х		
9	BH5 0.4-0.5	Aug 31, 2021		Soil	S21-Se02144				Х		Х				

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159

02 9566 6179 Fax:

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

Sample Detail						% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
-	Melbourne Laboratory - NATA Site # 1254											Х			\vdash
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	X
	bane Laborator	-				Х									\vdash
	h Laboratory - I														\vdash
_	field Laboratory		25079												<u> </u>
Exte	rnal Laboratory	<u>/</u>	-	T	T										\vdash
10	BH6 0.2-0.6	Aug 31, 2021		Soil	S21-Se02145					Х	Х		Х		
11	BH7 0.3-0.4	Aug 31, 2021		Soil	S21-Se02146					Х	Х		Х		
12	BH7 0.8-0.9	Aug 31, 2021		Soil	S21-Se02147				Х		Х				
13	BH8 0.0-0.1	Aug 31, 2021		Soil	S21-Se02148					Х	Х		Х		
14	BH8 0.3-0.4	Aug 31, 2021		Soil	S21-Se02149				Х		Х				
15 BH9 0.2-0.3 Aug 31, 2021 Soil S21-Se02150									Х		Χ				
16	BH10 0.3-0.4	Aug 31, 2021		Soil	S21-Se02151					Х	Х		Х		
17	BH10 0.4-0.5	Aug 31, 2021		Soil	S21-Se02152				Х		Х				
18	BH11 0.2-0.3	Aug 31, 2021		Soil	S21-Se02153						Х		Х		
19	BH12 0.3-0.4	Aug 31, 2021		Soil	S21-Se02154						Х		Х		
20	BH12 0.5-0.6	Aug 31, 2021		Soil	S21-Se02155	Х		Х	Х		Х	Х			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159 Fax:

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

New Zealand

Sample Detail							HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	Melbourne Laboratory - NATA Site # 1254											Х			
Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794						Х									
	h Laboratory - I														
	field Laboratory		25079												
	ernal Laboratory			1											
21	BH13 0.2-0.3	Aug 31, 2021		Soil	S21-Se02156					Х	Х		Х		
22	BH13 0.5-0.6	Aug 31, 2021		Soil	S21-Se02157				Х		Х				
23	BH14 0.2-0.3	Aug 31, 2021		Soil	S21-Se02158					Х	Х		Х		
24	BH14 0.9-1.0	Aug 31, 2021		Soil	S21-Se02159				Х		Х				
25 BH15 0.1-0.2 Aug 31, 2021 Soil S21-Se02160											Х		Х		
26 BH15 0.6-0.7 Aug 31, 2021 Soil S21-Se02161								Х		Х					
27	BH16 0.2-0.3	Aug 31, 2021		Soil	S21-Se02162						Х		Х		
28	BH16 0.5-0.6	Aug 31, 2021		Soil	S21-Se02163				Х		Х				
29	BH17 0.1-0.2	Aug 31, 2021		Soil	S21-Se02164						Х		Х		
30	BH17 0.9-1.0	Aug 31, 2021		Soil	S21-Se02165				Х		Х				
31	BH18 0.1-0.2	Aug 31, 2021		Soil	S21-Se02166						Х		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth
46-48 Banksia Road
Welshpool WA 6106
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe

NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159

Fax: 02 9566 6179

Received: Sep 1, 2021 7:23 PM

Due: Sep 8, 2021 Priority: 5 Day

Contact Name: - ALL INVOICES/SRA - Mark Kelly

Sample Detail							HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA Site # 1254												Х			
Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794															
		NATA Site # 237													
		y - NATA Site #	25079												
	rnal Laboratory			1											
32	BH18 0.8-0.9	Aug 31, 2021		Soil	S21-Se02167				Х		Х				
33	BH19 0.1-0.2	Aug 31, 2021		Soil	S21-Se02168						Х		Х		
34	BH19 0.6-0.7	Aug 31, 2021		Soil	S21-Se02169	Х		Х	Х		Х	Х			
35	BH20 0.2-0.3	Aug 31, 2021		Soil	S21-Se02170						Х		Х		
36 BH20 0.5-0.6 Aug 31, 2021 Soil S21-Se02171									Х		Х				
37 BH21 0.0-0.1 Aug 31, 2021 Soil S21-Se02172										Х		Х			
38	BH22 0.1-0.2	Aug 31, 2021		Soil	S21-Se02173						Х		Х		
39	BH22 0.6-0.7	Aug 31, 2021		Soil	S21-Se02174				Х		Х				
40	BH23 0.1-0.2	Aug 31, 2021		Soil	S21-Se02175						Х		Х		
41	D1	Aug 31, 2021		Soil	S21-Se02176					Х	Х		Х		
42	D2	Aug 31, 2021		Soil	S21-Se02177					Х	Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

New Zealand Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 Fax:

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

Phone: +64 9 526 45 51

IANZ # 1327

Eurofins Analytical Services Manager: Asim Khan

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254									Х			
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794			Х									
Pert	h Laboratory - I	NATA Site # 237	'36												
May	field Laboratory	/ - NATA Site #	25079												
Exte	rnal Laboratory	<u> </u>													
43	TRIP SPIKE	Aug 31, 2021		Soil	S21-Se02178										Х
44	TRIP BLANK	Aug 31, 2021		Soil	S21-Se02180									Χ	
45	RINSATE	Aug 31, 2021		Water	S21-Se02181								Х		
46	BH2 0.5-0.6	Aug 31, 2021		Soil	S21-Se02182		Х								
47	BH6 0.5-0.6	Aug 31, 2021		Soil	S21-Se02183		Х								
48	BH9 0.5-0.6	Aug 31, 2021		Soil	S21-Se02184		Х								
49	BH11 0.4-0.5	Aug 31, 2021		Soil	S21-Se02185		Х								
50	BH21 0.4-0.5	Aug 31, 2021		Soil	S21-Se02186		Х								
51	51 BH23 0.6-0.7 Aug 31, 2021 Soil S21-Se02187						Х								
Test	Counts					3	6	3	17	12	42	3	26	1	1

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: - ALL INVOICES/SRA - Mark Kelly

Report 821278-S

Project name DSI GREENACRE

Project ID ES8338
Received Date Sep 01, 2021

Client Sample ID			BH1 0.3-0.4	BH1 0.5-0.6	G01BH2 0.3-0.4	G01BH3 0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
•			1			1
Eurofins Sample No.			S21-Se02136	S21-Se02137	S21-Se02138	S21-Se02139
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		T				
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 100	< 100
TRH C15-C28	50	mg/kg	< 50	-	< 250	< 250
TRH C29-C36	50	mg/kg	< 50	-	< 250	< 250
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 250	< 250
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 250	< 250
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 250	< 250
TRH >C16-C34	100	mg/kg	< 100	=	< 500	< 500
TRH >C34-C40	100	mg/kg	< 100	=	< 500	< 500
TRH >C10-C40 (total)*	100	mg/kg	< 100	=	< 500	< 500
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	-	90	92
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5

	1			1		1
Client Sample ID			BH1 0.3-0.4	BH1 0.5-0.6	^{G01} BH2 0.3-0.4	G01BH3 0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02136	S21-Se02137	S21-Se02138	S21-Se02139
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	98	-	87	93
p-Terphenyl-d14 (surr.)	1	%	84	-	58	67
Organochlorine Pesticides		_				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.5	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.5	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.5	-
a-HCH	0.05	mg/kg	< 0.05	-	< 0.5	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.5	-
b-HCH	0.05	mg/kg	< 0.05	_	< 0.5	-
d-HCH	0.05	mg/kg	< 0.05	-	< 0.5	-
Dieldrin	0.05	mg/kg	< 0.05	_	< 0.5	-
Endosulfan I	0.05	mg/kg	< 0.05	_	< 0.5	-
Endosulfan II	0.05	mg/kg	< 0.05	_	< 0.5	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	< 0.5	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.5	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.5	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.5	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	< 0.5	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.5	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.5	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.5	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.5	-
Toxaphene	0.5	mg/kg	< 0.5	-	< 10	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.5	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.5	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 1	-
Dibutylchlorendate (surr.)	1	%	87	-	INT	-
Tetrachloro-m-xylene (surr.)	1	%	89	-	82	-
Polychlorinated Biphenyls		•				
Aroclor-1016	0.1	mg/kg	< 0.1	_	< 1	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 1	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 1	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 1	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 1	-
Total PCB*	0.1	mg/kg	< 0.1	-	< 1	-
Dibutylchlorendate (surr.)	1	%	87	-	INT	-
Tetrachloro-m-xylene (surr.)	1	%	89	_	82	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	BH1 0.3-0.4 Soil S21-Se02136 Aug 31, 2021	BH1 0.5-0.6 Soil S21-Se02137 Aug 31, 2021	Soil S21-Se02138 Aug 31, 2021	G01BH3 0.2-0.3 Soil S21-Se02139 Aug 31, 2021
Heavy Metals	•					
Arsenic	2	mg/kg	6.2	4.7	3.0	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	10.0	23	7.3
Copper	5	mg/kg	27	33	25	15
Lead	5	mg/kg	19	18	13	130
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	13	10	23	6.5
Zinc	5	mg/kg	45	68	40	72
% Moisture	1	%	21	21	13	25

Client Sample ID			BH3 0.6-0.7	BH4 0.2-0.4	BH4 0.9-1.0	BH5 0.2-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02140	S21-Se02141	S21-Se02142	S21-Se02143
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		·				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	61	-	79
TRH C29-C36	50	mg/kg	-	< 50	-	54
TRH C10-C36 (Total)	50	mg/kg	-	61	-	133
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	100	-	120
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	100	-	120
ВТЕХ						
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	93	-	98
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	1.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	1.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.6
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	0.7
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	0.6

Client Sample ID			DU12 0 C 0 7	BU4 0 2 0 4	BU4 0 0 4 0	BUE 0 0 0 F
-			BH3 0.6-0.7 Soil	BH4 0.2-0.4 Soil	BH4 0.9-1.0 Soil	BH5 0.2-0.5 Soil
Sample Matrix						
Eurofins Sample No.			S21-Se02140	S21-Se02141	S21-Se02142	S21-Se02143
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	0.9
Chrysene	0.5	mg/kg	-	< 0.5	-	0.8
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	1.4
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	0.6
Pyrene	0.5	mg/kg	-	< 0.5	-	1.5
Total PAH*	0.5	mg/kg	-	< 0.5	-	7.3
2-Fluorobiphenyl (surr.)	1	%	-	89	-	90
p-Terphenyl-d14 (surr.)	1	%	-	65	-	60
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	61	-	61
Tetrachloro-m-xylene (surr.)	1	%	-	76	-	79
Polychlorinated Biphenyls				2 :		2:
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Arcelor 1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248 Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
	. () 1	mg/kg	-	< 0.1	-	< 0.1

Client Sample ID			BH3 0.6-0.7	BH4 0.2-0.4	BH4 0.9-1.0	BH5 0.2-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02140	S21-Se02141	S21-Se02142	S21-Se02143
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	61	-	61
Tetrachloro-m-xylene (surr.)	1	%	-	76	-	79
Heavy Metals						
Arsenic	2	mg/kg	3.9	6.4	6.6	76
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	24	19	35
Copper	5	mg/kg	23	25	27	18
Lead	5	mg/kg	24	53	13	320
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	6.0	18	12	12
Zinc	5	mg/kg	48	110	57	56
% Moisture	1	%	18	14	16	20
% Clay	1	%	27	-	-	=
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	65	-	-	=
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	-	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	17	-	-	-

Client Sample ID			BH5 0.4-0.5	BH6 0.2-0.6	G01BH7 0.3-0.4	BH7 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02144	S21-Se02145	S21-Se02146	S21-Se02147
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	< 100	-
TRH C15-C28	50	mg/kg	-	< 50	280	-
TRH C29-C36	50	mg/kg	-	< 50	< 250	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	280	-
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	< 250	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 250	-
TRH >C16-C34	100	mg/kg	-	< 100	< 500	-
TRH >C34-C40	100	mg/kg	-	< 100	< 500	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	< 500	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	_
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	92	90	-

Client Sample ID			BH5 0.4-0.5	BH6 0.2-0.6	G01BH7 0.3-0.4	BH7 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02144	S21-Se02145	S21-Se02146	S21-Se02147
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.2	-
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	-
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Pyrene Fotal PAH*	0.5 0.5	mg/kg	<u> </u>	< 0.5 < 0.5	< 0.5 < 0.5	-
2-Fluorobiphenyl (surr.)	1	mg/kg %	-	98	< 0.5 77	-
p-Terphenyl-d14 (surr.)	1	%	-	81	53	
Organochlorine Pesticides	'	/0		01	33	_
Chlordanes - Total	0.1	mg/kg	_	< 0.1	< 1	_
4.4'-DDD	0.05	mg/kg	_	< 0.05	< 0.5	_
4.4'-DDE	0.05	mg/kg	_	< 0.05	< 0.5	_
4.4'-DDT	0.05	mg/kg	_	< 0.05	< 0.5	_
a-HCH	0.05	mg/kg	-	< 0.05	< 0.5	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.5	-
o-HCH	0.05	mg/kg	-	< 0.05	< 0.5	-
J-HCH	0.05	mg/kg	-	< 0.05	< 0.5	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.5	-
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.5	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.5	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.5	-
Endrin	0.05	mg/kg	-	< 0.05	< 0.5	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.5	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.5	-
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	< 0.5	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.5	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.5	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.5	-
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.5	-
Toxaphene	0.5	mg/kg	-	< 0.5	< 10	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.5	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.5	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 1	-
Dibutylchlorendate (surr.)	1	%	-	106	INT	-

Client Sample ID			BH5 0.4-0.5	BH6 0.2-0.6	G01BH7 0.3-0.4	BH7 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02144	S21-Se02145	S21-Se02146	S21-Se02147
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	< 1	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	< 1	-
Total PCB*	0.1	mg/kg	-	< 0.1	< 1	-
Dibutylchlorendate (surr.)	1	%	-	106	INT	-
Tetrachloro-m-xylene (surr.)	1	%	-	92	77	-
Heavy Metals						
Arsenic	2	mg/kg	11	5.2	2.1	2.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	22	29	7.7
Copper	5	mg/kg	25	18	26	20
Lead	5	mg/kg	15	18	19	17
Mercury	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	6.2	11	37	8.2
Zinc	5	mg/kg	38	41	55	72
% Moisture	1	%	23	17	10	20

011 . 0 . 1 . 10			001		1	1
Client Sample ID			G01BH8 0.0-0.1	BH8 0.3-0.4	BH9 0.2-0.3	BH10 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02148	S21-Se02149	S21-Se02150	S21-Se02151
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 100	-	< 20	< 20
TRH C15-C28	50	mg/kg	610	=	< 50	62
TRH C29-C36	50	mg/kg	540	-	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	1150	=	< 50	62
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	=	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	=	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	=	< 20	< 20
TRH >C10-C16	50	mg/kg	< 250	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 250	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 500	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 500	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 500	-	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	=	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	=	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	-	91	94

Client Sample ID			G01BH8 0.0-0.1	BH8 0.3-0.4	BH9 0.2-0.3	BH10 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02148	S21-Se02149	S21-Se02150	S21-Se02151
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	73	=	89	80
p-Terphenyl-d14 (surr.)	1	%	52	-	73	78
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.5	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	-	-	< 0.05
a-HCH	0.05	mg/kg	< 0.5	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.5	-	-	< 0.05
b-HCH	0.05	mg/kg	< 0.5	-	-	< 0.05
d-HCH	0.05	mg/kg	< 0.5	-	-	< 0.05
Dieldrin Endosulfan I	0.05	mg/kg mg/kg	< 0.5 < 0.5	-	-	< 0.05 < 0.05
Endosulfan II	0.05	mg/kg	< 0.5	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.5	-	_	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	-	_	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	-	_	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.5	-	_	< 0.05
Heptachlor	0.05	mg/kg	< 0.5	-	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.5	-	_	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.5	_	_	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	-	-	< 0.05
Toxaphene	0.5	mg/kg	< 10	-	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	-	-	< 0.1
	į	<u> </u>	- · · · · · · · · · · · · · · · · · · ·	-1		, ,,,,
Dibutylchlorendate (surr.)	1	%	51	_	-	59

Client Sample ID			^{G01} BH8 0.0-0.1	BH8 0.3-0.4	BH9 0.2-0.3	BH10 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02148	S21-Se02149	S21-Se02150	S21-Se02151
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 1	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	51	-	=	59
Tetrachloro-m-xylene (surr.)	1	%	71	-	=	79
Heavy Metals						
Arsenic	2	mg/kg	< 2	4.5	4.4	4.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	180	16	17	63
Copper	5	mg/kg	43	32	18	34
Lead	5	mg/kg	20	18	23	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	7.5	< 5	8.5	58
Zinc	5	mg/kg	270	31	98	98
% Moisture	1	%	48	15	17	16

Client Sample ID			BH10 0.4-0.5	BH11 0.2-0.3	BH12 0.3-0.4	BH12 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02152	S21-Se02153	S21-Se02154	S21-Se02155
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	< 20	-
TRH C15-C28	50	mg/kg	-	< 50	< 50	-
TRH C29-C36	50	mg/kg	-	< 50	< 50	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	< 50	-
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	< 100	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	94	94	-

Client Sample ID			BH10 0.4-0.5	BH11 0.2-0.3	BH12 0.3-0.4	BH12 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02152	S21-Se02153	S21-Se02154	S21-Se02155
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit		3 - 1,	301, 2021	301, 2021
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	1.2	_
Acenaphthene	0.5	mg/kg	_	< 0.5	< 0.5	_
Acenaphthylene	0.5	mg/kg	_	< 0.5	< 0.5	_
Anthracene	0.5	mg/kg	_	< 0.5	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	_	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	89	93	-
p-Terphenyl-d14 (surr.)	1	%	-	74	78	-
Heavy Metals						
Arsenic	2	mg/kg	4.7	8.5	4.7	8.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	22	44	20
Copper	5	mg/kg	19	19	25	23
Lead	5	mg/kg	24	24	12	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	5.5	7.9	37	9.1
Zinc	5	mg/kg	30	42	64	52
% Moisture	1	%	17	19	16	21
% Clay	1	%	-	-	-	32
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	-	110
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	6.5
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	14

Client Sample ID			^{G01} BH13 0.2-0.3	BH13 0.5-0.6	BH14 0.2-0.3	BH14 0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02156	S21-Se02157	S21-Se02158	S21-Se02159
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit	3 ,			
Total Recoverable Hydrocarbons	1 2011	- Ornit				
TRH C6-C9	20	mg/kg	< 20	_	< 20	_
TRH C10-C14	20	mg/kg	< 100	_	26	_
TRH C15-C28	50	mg/kg	< 250	_	170	_
TRH C29-C36	50	mg/kg	< 250	_	140	_
TRH C10-C36 (Total)	50	mg/kg	< 250	_	336	_
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	_	< 0.5	_
TRH C6-C10	20	mg/kg	< 20	_	< 20	_
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	_	< 20	_
TRH >C10-C16	50	mg/kg	< 250	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 250	_	< 50	-
TRH >C16-C34	100	mg/kg	< 500	-	280	-
TRH >C34-C40	100	mg/kg	< 500	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 500	-	280	-
BTEX	'	, , ,				
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	_	< 0.1	_
Ethylbenzene	0.1	mg/kg	< 0.1	_	< 0.1	_
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	_
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	_
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	_
4-Bromofluorobenzene (surr.)	1	%	91	-	105	_
Polycyclic Aromatic Hydrocarbons	•	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	80	-	84	-
o-Terphenyl-d14 (surr.)	1	%	52	-	65	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.5	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.5	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.5	-	< 0.05	-

Client Sample ID			G01BH13 0.2-0.3	BH13 0.5-0.6	BH14 0.2-0.3	BH14 0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02156	S21-Se02157	S21-Se02158	S21-Se02159
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides	1 -					
a-HCH	0.05	mg/kg	< 0.5	-	< 0.05	_
Aldrin	0.05	mg/kg	< 0.5	-	< 0.05	_
b-HCH	0.05	mg/kg	< 0.5	-	< 0.05	_
d-HCH	0.05	mg/kg	< 0.5	-	< 0.05	_
Dieldrin	0.05	mg/kg	< 0.5	-	< 0.05	_
Endosulfan I	0.05	mg/kg	< 0.5	-	< 0.05	_
Endosulfan II	0.05	mg/kg	< 0.5	-	< 0.05	_
Endosulfan sulphate	0.05	mg/kg	< 0.5	-	< 0.05	_
Endrin	0.05	mg/kg	< 0.5	-	< 0.05	_
Endrin aldehyde	0.05	mg/kg	< 0.5	_	< 0.05	_
Endrin ketone	0.05	mg/kg	< 0.5	_	< 0.05	_
g-HCH (Lindane)	0.05	mg/kg	< 0.5	-	< 0.05	_
Heptachlor	0.05	mg/kg	< 0.5	_	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	< 0.5	-	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	< 0.5	_	< 0.05	_
Methoxychlor	0.05	mg/kg	< 0.5	_	< 0.05	_
Toxaphene	0.5	mg/kg	< 10	_	< 0.5	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	_	< 0.05	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	_	< 0.05	_
Vic EPA IWRG 621 OCP (Total)*	0.03	mg/kg	< 1	_	< 0.1	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	_	< 0.1	_
Dibutylchlorendate (surr.)	1	%	INT	-	71	_
Tetrachloro-m-xylene (surr.)	1	%	73	_	78	_
Polychlorinated Biphenyls	'	70	73		70	
Aroclor-1016	0.1	mg/kg	< 1	_	< 0.1	_
Aroclor-1221	0.1	mg/kg	< 1	-	< 0.1	-
Aroclor-1221 Aroclor-1232	0.1	mg/kg	< 1	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 1	-	< 0.1	
Aroclor-1248	0.1	mg/kg	< 1	_	< 0.1	_
Aroclor-1254	0.1	mg/kg	< 1	_	< 0.1	<u> </u>
Aroclor-1260	0.1	mg/kg	< 1	_	< 0.1	_
Total PCB*	0.1	mg/kg	< 1	-	< 0.1	
Dibutylchlorendate (surr.)	1	%	INT	-	71	
Tetrachloro-m-xylene (surr.)	1	%	73	-	78	_
Heavy Metals	'	/0	1.3	_	10	-
Arsenic	2	ma/ka	2.5	6.3	3.3	7.5
Cadmium		mg/kg				
Chromium	0.4 5	mg/kg	< 0.4	< 0.4 24	< 0.4	< 0.4 25
	5	mg/kg	26	22	18	25
Copper	5	mg/kg	78	16	17	17
Lead		mg/kg				
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Nickel Zinc	5 5	mg/kg	24	7.9	60	7.9
<u> </u>] 5	mg/kg	76	47	OU .	49

01. 10. 1.10						
Client Sample ID			BH15 0.1-0.2	BH15 0.6-0.7	BH16 0.2-0.3	BH16 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02160	S21-Se02161	S21-Se02162	S21-Se02163
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		·				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	50	-	94	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	50	-	94	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	150	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	150	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	107	-	100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	85	-	87	-
p-Terphenyl-d14 (surr.)	1	%	62	-	88	-
Heavy Metals		<u> </u>				
Arsenic	2	mg/kg	2.8	3.8	3.7	4.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	11	18	17
Copper	5	mg/kg	20	12	16	17

Client Sample ID Sample Matrix			BH15 0.1-0.2 Soil	BH15 0.6-0.7 Soil	BH16 0.2-0.3 Soil	BH16 0.5-0.6 Soil
Eurofins Sample No.			S21-Se02160	S21-Se02161	S21-Se02162	S21-Se02163
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	45	26	24	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	14	5.9	13	7.6
Zinc	5	mg/kg	88	40	49	37
% Moisture	1	%	15	20	14	22

Client Sample ID			BH17 0.1-0.2	BH17 0.9-1.0	BH18 0.1-0.2	BH18 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02164	S21-Se02165	S21-Se02166	S21-Se02167
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 202
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	•	•				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	68	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	68	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	130	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	130	-
втех	•					
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	88	-	116	-
Polycyclic Aromatic Hydrocarbons	•	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	< 0.5	_

Client Sample ID			BH17 0.1-0.2	BH17 0.9-1.0	BH18 0.1-0.2	BH18 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02164	S21-Se02165	S21-Se02166	S21-Se02167
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	84	-	106	-
p-Terphenyl-d14 (surr.)	1	%	83	-	98	-
Heavy Metals						
Arsenic	2	mg/kg	3.6	7.0	< 2	6.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.7	15	6.1	18
Copper	5	mg/kg	9.5	21	13	21
Lead	5	mg/kg	26	15	16	20
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	5.6	6.0	< 5	9.7
Zinc	5	mg/kg	36	31	36	43
% Moisture	1	%	12	19	5.1	20

Client Sample ID			BH19 0.1-0.2	BH19 0.6-0.7	BH20 0.2-0.3	BH20 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02168	S21-Se02169	S21-Se02170	S21-Se02171
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	55	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	55	-	< 50	=
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	110	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	110	-	< 100	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	_
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	_
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	_
4-Bromofluorobenzene (surr.)	1	%	102	-	102	-

Client Sample ID			BH19 0.1-0.2	BH19 0.6-0.7	BH20 0.2-0.3	BH20 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02168	S21-Se02169	S21-Se02170	S21-Se02171
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	_	0.6	_
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	1.2	_	1.2	_
Acenaphthene	0.5	mg/kg	< 0.5	_	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	_	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	_	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	_
Fluoranthene	0.5	mg/kg	0.7	-	< 0.5	_
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	_
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5	_
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	_
Pyrene	0.5	mg/kg	0.8	-	< 0.5	_
Total PAH*	0.5	mg/kg	1.5	-	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	92	-	91	_
p-Terphenyl-d14 (surr.)	1	%	75	-	80	-
Heavy Metals						
Arsenic	2	mg/kg	4.0	3.9	3.7	9.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	15	13	29
Copper	5	mg/kg	23	32	21	19
Lead	5	mg/kg	84	84	16	19
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	11	< 5	6.3
Zinc	5	mg/kg	130	220	26	31
% Moisture	1	%	17	20	16	20
% Clay	1	%	-	19	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	47	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	7.1	-	-
Cation Exchange Capacity		<u> </u>				
Cation Exchange Capacity	0.05	meq/100g	-	18	-	-

Client Sample ID			BH21 0.0-0.1	BH22 0.1-0.2	BH22 0.6-0.7	G01BH23 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02172	S21-Se02173	S21-Se02174	S21-Se02175
•						
Date Sampled	1.00		Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		T				
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 100
TRH C15-C28	50	mg/kg	< 50	< 50	-	360
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 250
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	-	360
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20 < 50	< 20	-	< 20
TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2) ^{N01}	50 50	mg/kg	< 50	< 50 < 50	-	< 250 < 250
	100	mg/kg	< 100	< 100	-	620
TRH >C16-C34 TRH >C34-C40	100	mg/kg mg/kg	< 100	< 100	-	< 500
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	620
BTEX	100	ilig/kg	< 100	< 100	-	620
	0.1		.01	- 0.1	_	.01
Benzene Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.1	mg/kg mg/kg	< 0.1	< 0.1		< 0.1
o-Xylene	0.2	mg/kg	< 0.1	< 0.1		< 0.2
Xylenes - Total*	0.1	mg/kg	< 0.3	< 0.3		< 0.1
4-Bromofluorobenzene (surr.)	1	%	90	91	_	97
Polycyclic Aromatic Hydrocarbons		70	30	01		01
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	_	1.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	_	1.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	_	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	0.7
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	0.8
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	0.7
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	1.1
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	1.2
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	5.9
2-Fluorobiphenyl (surr.)	1	%	92	96	-	65
p-Terphenyl-d14 (surr.)	1	%	77	82	-	64
Heavy Metals						
Arsenic	2	mg/kg	4.8	2.7	7.5	6.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	13	7.8	11
Copper	5	mg/kg	25	17	19	39

Client Sample ID			BH21 0.0-0.1	BH22 0.1-0.2	BH22 0.6-0.7	G01BH23 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02172	S21-Se02173	S21-Se02174	S21-Se02175
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	25	14	13	90
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	13	< 5	20
Zinc	5	mg/kg	74	43	17	170
% Moisture	1	%	16	15	17	8.0

Client Sample ID			^{G01} D1	D2	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02176	S21-Se02177	S21-Se02178	S21-Se02180
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 100	< 20	-	-
TRH C15-C28	50	mg/kg	< 250	< 50	-	-
TRH C29-C36	50	mg/kg	< 250	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	< 250	< 50	-	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 250	< 50	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 250	< 50	-	-
TRH >C16-C34	100	mg/kg	< 500	< 100	-	-
TRH >C34-C40	100	mg/kg	< 500	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 500	< 100	-	-
втех	<u>.</u>					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	90	-	97
Polycyclic Aromatic Hydrocarbons	·	<u> </u>				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-

Client Sample ID			^{G01} D1	D2	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02176	S21-Se02177	S21-Se02178	S21-Se02180
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	75	92	-	-
p-Terphenyl-d14 (surr.)	1	%	56	76	-	-
Organochlorine Pesticides		_				
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	-	-
a-HCH	0.05	mg/kg	< 0.5	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.5	< 0.05	-	-
b-HCH	0.05	mg/kg	< 0.5	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.5	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	_	-
Endrin	0.05	mg/kg	< 0.5	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.5	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.5	< 0.05	-	-
Toxaphene	0.5	mg/kg	< 10	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	80	104	-	-
Tetrachloro-m-xylene (surr.)	1	%	79	88	-	-
Polychlorinated Biphenyls		•				
Aroclor-1016	0.1	mg/kg	< 1	< 0.1	_	-
Aroclor-1221	0.1	mg/kg	< 1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 1	< 0.1	-	-
Total PCB*	0.1	mg/kg	< 1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	80	104	-	-
Tetrachloro-m-xylene (surr.)	1	%	79	88	-	-

Client Sample ID			^{G01} D1	D2	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se02176	S21-Se02177	S21-Se02178	S21-Se02180
Date Sampled			Aug 31, 2021	Aug 31, 2021	Aug 31, 2021	Aug 31, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.1	6.6	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	32	33	-	-
Copper	5	mg/kg	39	33	-	-
Lead	5	mg/kg	17	28	=	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	53	27	-	-
Zinc	5	mg/kg	63	81	-	-
% Moisture	1	%	12	13	-	-
TRH C6-C10	1	%	-	-	93	-
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	88	-
TRH C6-C9	1	%	-	-	94	-
ВТЕХ						
Benzene	1	%	-	-	90	-
Ethylbenzene	1	%	-	-	93	-
m&p-Xylenes	1	%	-	-	92	-
o-Xylene	1	%	-	-	93	-
Toluene	1	%	-	-	95	-
Xylenes - Total	1	%	-	-	93	-
4-Bromofluorobenzene (surr.)	1	%	-	-	94	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 07, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 03, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Sep 03, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Sep 03, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Sep 01, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			
% Clay	Brisbane	Sep 06, 2021	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Sep 03, 2021	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Sep 03, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Sep 04, 2021	180 Days
M. U. L. TMANET 2000 O. C. E. L			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 1

Perth
46-48 Banksia Road
Welshpool WA 6106
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Sep 1, 2021 7:23 PM

- ALL INVOICES/SRA - Mark Kelly

Sep 8, 2021

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Aargus Pty Ltd

6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Eurofins Analytical Services Manager : Asim Khan

5 Day

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254									Х			
Sydı	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	X
		y - NATA Site #				Х									
Pert	h Laboratory - I	NATA Site # 237	36												
May	field Laboratory	y - NATA Site #	25079												
Exte	rnal Laboratory	<u>/</u>			_										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH1 0.3-0.4	Aug 31, 2021		Soil	S21-Se02136					Х	Х		Х		
2	BH1 0.5-0.6	Aug 31, 2021		Soil	S21-Se02137				Х		Х				
3	BH2 0.3-0.4	Aug 31, 2021		Soil	S21-Se02138					Х	Х		Х		
4	BH3 0.2-0.3	Aug 31, 2021		Soil	S21-Se02139						Х		Х		
5	BH3 0.6-0.7	Aug 31, 2021		Soil	S21-Se02140	Х		Х	Х		Х	Х			
6	BH4 0.2-0.4	Aug 31, 2021		Soil	S21-Se02141					Х	Х		Х		
7	BH4 0.9-1.0	Aug 31, 2021		Soil	S21-Se02142				Х		Х				
8	BH5 0.2-0.5	Aug 31, 2021		Soil	S21-Se02143					Х	Х		Х		
9	BH5 0.4-0.5	Aug 31, 2021		Soil	S21-Se02144				Х		Х				

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 1

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Priority:

Contact Name:

Due:

 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

- ALL INVOICES/SRA - Mark Kelly

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Address:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Eurofins Analytical Services Manager : Asim Khan

5 Day

Sep 1, 2021 7:23 PM Sep 8, 2021

New Zealand

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborate											Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator	•				Х									
	h Laboratory - N														
	field Laboratory		25079												
	rnal Laboratory	1		1											
10	BH6 0.2-0.6	Aug 31, 2021		Soil	S21-Se02145					Х	Х		Х		
11	BH7 0.3-0.4	Aug 31, 2021		Soil	S21-Se02146					Х	Х		Х		
12	BH7 0.8-0.9	Aug 31, 2021		Soil	S21-Se02147				Х		Х				
13	BH8 0.0-0.1	Aug 31, 2021		Soil	S21-Se02148					Х	Х		Х		
14	BH8 0.3-0.4	Aug 31, 2021		Soil	S21-Se02149				Х		Х				
15	BH9 0.2-0.3	Aug 31, 2021		Soil	S21-Se02150						Х		Х		
16	BH10 0.3-0.4	Aug 31, 2021		Soil	S21-Se02151					Х	Х		Х		
17	BH10 0.4-0.5	Aug 31, 2021		Soil	S21-Se02152				Х		Х				
18	BH11 0.2-0.3	Aug 31, 2021		Soil	S21-Se02153						Х		Х		
19	BH12 0.3-0.4	Aug 31, 2021		Soil	S21-Se02154						Х		Х		
20	BH12 0.5-0.6	Aug 31, 2021		Soil	S21-Se02155	Х		Х	Х		Χ	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth
46-48 Banksia Road
Welshpool WA 6106
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Priority:

Contact Name:

Due:

 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

- ALL INVOICES/SRA - Mark Kelly

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Address:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

ES8338

Order No.: Report #:

821278

Phone: 02 9568 6159 **Fax:** 02 9566 6179

Eurofins Analytical Services Manager: Asim Khan

5 Day

New Zealand

Sep 1, 2021 7:23 PM Sep 8, 2021

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site	# 1254									Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator	•				Х									
	h Laboratory - N														
	field Laboratory		25079												
	rnal Laboratory	1		_											
21	BH13 0.2-0.3	Aug 31, 2021		Soil	S21-Se02156					Х	Х		Х		
22	BH13 0.5-0.6	Aug 31, 2021		Soil	S21-Se02157				Х		Х				
23	BH14 0.2-0.3	Aug 31, 2021		Soil	S21-Se02158					Х	Х		Х		
24	BH14 0.9-1.0	Aug 31, 2021		Soil	S21-Se02159				Х		Х				
25	BH15 0.1-0.2	Aug 31, 2021		Soil	S21-Se02160						Х		Х		
26	BH15 0.6-0.7	Aug 31, 2021		Soil	S21-Se02161				Х		Х				
27	BH16 0.2-0.3	Aug 31, 2021		Soil	S21-Se02162						Х		Х		
28	BH16 0.5-0.6	Aug 31, 2021		Soil	S21-Se02163				Х		Х				
29	BH17 0.1-0.2	Aug 31, 2021		Soil	S21-Se02164						Х		Х		
30	BH17 0.9-1.0	Aug 31, 2021		Soil	S21-Se02165				Х		Х				
31	BH18 0.1-0.2	Aug 31, 2021		Soil	S21-Se02166						Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 Fax:

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

New Zealand

Eurofins Analytical Services Manager: Asim Khan

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborate	ory - NATA Site	# 1254									Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator	•				Х									
	h Laboratory - I														
	field Laboratory		25079												
	ernal Laboratory	1		T											
32	BH18 0.8-0.9	Aug 31, 2021		Soil	S21-Se02167				Х		Х				
33	BH19 0.1-0.2	Aug 31, 2021		Soil	S21-Se02168						Х		Х		
34	BH19 0.6-0.7	Aug 31, 2021		Soil	S21-Se02169	Х		Х	Х		Х	Х			
35	BH20 0.2-0.3	Aug 31, 2021		Soil	S21-Se02170						Х		Х		
36	BH20 0.5-0.6	Aug 31, 2021		Soil	S21-Se02171				Х		Х				
37	BH21 0.0-0.1	Aug 31, 2021		Soil	S21-Se02172						Х		Х		
38	BH22 0.1-0.2	Aug 31, 2021		Soil	S21-Se02173						Х		Х		
39	BH22 0.6-0.7	Aug 31, 2021		Soil	S21-Se02174				Х		Х				
40	BH23 0.1-0.2	Aug 31, 2021		Soil	S21-Se02175						Х		Х		
41	D1	Aug 31, 2021		Soil	S21-Se02176					Х	Х		Х		
42	D2	Aug 31, 2021		Soil	S21-Se02177					Х	Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Aargus Pty Ltd 6 Carter Street

Lidcombe NSW 2141

Project Name:

DSI GREENACRE

Project ID:

Address:

ES8338

Order No.:

Report #: 821278

Phone: 02 9568 6159 Fax:

02 9566 6179

Received: Sep 1, 2021 7:23 PM

Sep 8, 2021 Due: **Priority:** 5 Day

- ALL INVOICES/SRA - Mark Kelly **Contact Name:**

New Zealand

Eurofins Analytical Services Manager: Asim Khan

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site	# 1254									Х			
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - I	NATA Site # 237	36												
May	field Laboratory	/ - NATA Site # :	25079												
Exte	rnal Laboratory														
43	TRIP SPIKE	Aug 31, 2021		Soil	S21-Se02178										Х
44	TRIP BLANK	Aug 31, 2021		Soil	S21-Se02180									Х	
45	RINSATE	Aug 31, 2021		Water	S21-Se02181								Х		
46	BH2 0.5-0.6	Aug 31, 2021		Soil	S21-Se02182		Х								
47	BH6 0.5-0.6	Aug 31, 2021		Soil	S21-Se02183		Х								
48	BH9 0.5-0.6	Aug 31, 2021		Soil	S21-Se02184		Х								
49	BH11 0.4-0.5	Aug 31, 2021		Soil	S21-Se02185		Х								
50	BH21 0.4-0.5	Aug 31, 2021		Soil	S21-Se02186		Х								
51	BH23 0.6-0.7	Aug 31, 2021		Soil	S21-Se02187		Х								
Test	Counts					3	6	3	17	12	42	3	26	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 0.0	0.0	1 . 0.00	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
` '	mg/kg	< 0.5	0.5	Pass	
Chrysene Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		0.4	0.4	D	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	-
a-HCH	mg/kg	< 0.05	0.05	Pass	-
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank	139		4.0	7 5 5 5	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221 Aroclor-1232		< 0.1	0.1	Pass	
	mg/kg				
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank		10	<u> </u>	. 455	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank	40,0111	110		1 400	
Cation Exchange Capacity					
Cation Exchange Capacity Cation Exchange Capacity	meg/100g	< 0.05	0.05	Pass	
5 1 2	[meq/roog]	< 0.05	0.05	rass	
LCS - % Recovery					
Total Recoverable Hydrocarbons	0,		70.400	_	
TRH C6-C9	%	97	70-130	Pass	
TRH C10-C14	%	113	70-130	Pass	
Naphthalene	%	106	70-130	Pass	
TRH C6-C10	%	97	70-130	Pass	
TRH >C10-C16	%	109	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	96	70-130	Pass	
Toluene	%	100	70-130	Pass	
Ethylbenzene	%	101	70-130	Pass	
m&p-Xylenes	%	104	70-130	Pass	
o-Xylene	%	105	70-130	Pass	
Xylenes - Total*	%	104	70-130	Pass	
LCS - % Recovery	,,,				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	112	70-130	Pass	
•		104			
Acenaphthylene	%		70-130	Pass	
Anthracene	%	110	70-130	Pass	
Benz(a)anthracene	%	108	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	%	110	70-130	Pass	
Benzo(b&j)fluoranthene	%	119	70-130	Pass	
Benzo(g.h.i)perylene	%	111	70-130	Pass	
Benzo(k)fluoranthene	%	118	70-130	Pass	
Chrysene	%	121	70-130	Pass	
Dibenz(a.h)anthracene	%	104	70-130	Pass	
Fluoranthene	%	109	70-130	Pass	
Fluorene	%	118	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	102	70-130	Pass	
Naphthalene	%	110	70-130	Pass	
Phenanthrene	%	113	70-130	Pass	
Pyrene	%	111	70-130	Pass	
LCS - % Recovery				•	
Organochlorine Pesticides					
Chlordanes - Total	%	85	70-130	Pass	
4.4'-DDD	%	70	70-130	Pass	
4.4'-DDE	%	90	70-130	Pass	
4.4'-DDT	%	100	70-130	Pass	
a-HCH	%	81	70-130	Pass	
Aldrin	%	86	70-130	Pass	
b-HCH	%	81	70-130	Pass	
d-HCH	%	80	70-130	Pass	
Dieldrin	%	73	70-130	Pass	
Endosulfan I	%	76	70-130	Pass	
Endosulfan II	%	84	70-130	Pass	
Endosulfan sulphate	%	70	70-130	Pass	
Endrin	%	74	70-130	Pass	
Endrin aldehyde	%	78	70-130	Pass	
Endrin ketone	%	71	70-130	Pass	
g-HCH (Lindane)	%	89	70-130	Pass	
Heptachlor	%	71	70-130	Pass	
Heptachlor epoxide	%	79	70-130	Pass	
Hexachlorobenzene	%	93	70-130	Pass	
Methoxychlor	%	81	70-130	Pass	
LCS - % Recovery	70	01	70-130	1 033	
Polychlorinated Biphenyls					
Aroclor-1016	%	79	70-130	Pass	
Aroclor-1260	%	87	70-130	Pass	
LCS - % Recovery	/0	01	10-130	Fass	
Heavy Metals Arsenic	%	81	80-120	Pass	
Cadmium	%	98	80-120	Pass	
Chromium	%	98	80-120	Pass	
	%	93	80-120	Pass	
Copper		1			-
Lead	%	101	80-120 80-120	Pass	
Mercury	%	103		Pass	
Nickel	%	94	80-120	Pass	
Zinc		90	80-120	Pass	
LCS - % Recovery	0/	100	70.400	Dr	-
% Clay	%	108	70-130	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	92	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S21-Se02137	CP	%	79	75-125	Pass	
Cadmium	S21-Se02137	CP	%	98	75-125	Pass	
Chromium	S21-Se02137	CP	%	99	75-125	Pass	
Copper	S21-Se02137	CP	%	100	75-125	Pass	
Lead	S21-Se02137	CP	%	108	75-125	Pass	
Mercury	S21-Se02137	CP	%	106	75-125	Pass	
Nickel	S21-Se02137	CP	%	96	75-125	Pass	
Zinc	S21-Se02137	CP	%	104	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons			Result 1			
TRH >C10-C16	S21-Se02138	CP	%	127	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons			Result 1			
TRH C6-C9	S21-Se02154	CP	%	81	70-130	Pass	
TRH C10-C14	S21-Se02154	CP	%	95	70-130	Pass	
Naphthalene	S21-Se02154	CP	%	92	70-130	Pass	
TRH C6-C10	S21-Se02154	CP	%	82	70-130	Pass	
TRH >C10-C16	S21-Se02154	CP	%	96	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S21-Se02154	CP	%	79	70-130	Pass	
Toluene	S21-Se02154	CP	%	87	70-130	Pass	
Ethylbenzene	S21-Se02154	CP	%	90	70-130	Pass	
m&p-Xylenes	S21-Se02154	CP	%	92	70-130	Pass	
o-Xylene	S21-Se02154	CP	%	93	70-130	Pass	
Xylenes - Total*	S21-Se02154	CP	%	92	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S21-Se02157	CP	%	75	75-125	Pass	
Cadmium	S21-Se02157	CP	%	92	75-125	Pass	
Chromium	S21-Se02157	CP	%	82	75-125	Pass	
Copper	S21-Se02157	CP	%	77	75-125	Pass	
Lead	S21-Se02157	CP	%	98	75-125	Pass	
Mercury	S21-Se02157	CP	%	94	75-125	Pass	
Nickel	S21-Se02157	CP	%	78	75-125	Pass	
Zinc	S21-Se02157	CP	%	79	75-125	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocar	bons			Result 1			
Acenaphthene	S21-Se05384	NCP	%	90	70-130	Pass	
Acenaphthylene	S21-Se05384	NCP	%	91	70-130	Pass	
Anthracene	S21-Se05384	NCP	%	90	70-130	Pass	
Benz(a)anthracene	S21-Se05384	NCP	%	99	70-130	Pass	
Benzo(a)pyrene	S21-Se05384	NCP	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Se05384	NCP	%	97	70-130	Pass	
Benzo(g.h.i)perylene	S21-Se05384	NCP	%	83	70-130	Pass	
Benzo(k)fluoranthene	S21-Se05384	NCP	%	70	70-130	Pass	
Chrysene	S21-Se05384	NCP	%	83	70-130	Pass	
Dibenz(a.h)anthracene	S21-Se05384	NCP	%	105	70-130	Pass	
Fluoranthene	S21-Se05384	NCP	%	83	70-130	Pass	
Fluorene	S21-Se05384	NCP	%	95	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se05384	NCP	%	107	70-130	Pass	
Naphthalene	S21-Se05384	NCP	%	92	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	S21-Se05384	NCP	%	88			70-130	Pass	Oode
Pyrene	S21-Se05384	NCP	%	85			70-130	Pass	
Spike - % Recovery		1101	,,,				70 100		
Total Recoverable Hydrocarbon	s			Result 1			Τ		
TRH C10-C14	S21-Se02173	СР	%	85			70-130	Pass	
TRH >C10-C16	S21-Se02173	CP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbon	S			Result 1	Result 2	RPD			
TRH C6-C9	S21-Se02136	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-Se02136	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Se02136	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Se02136	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S21-Se02136	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Se02136	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-Se02136	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Se02136	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Se02136	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate Duplicate	021 0002100	UI UI	nig/kg	1 100	100		3070	1 455	
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Se02136	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
•	S21-Se02136	CP		< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes		CP	mg/kg						
o-Xylene	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total* Duplicate	S21-Se02136	CF	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Polycyclic Aromatic Hydrocarbo	ne			Result 1	Result 2	RPD	Т		
Acenaphthene	S21-Se02136	СР	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
•		CP	mg/kg						
Acenaphthylene	S21-Se02136 S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Se02136	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Se02136		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				_	_				
Organochlorine Pesticides	1 -	1		Result 1	Result 2	RPD		_	
Chlordanes - Total	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Se02136	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Dieldrin	S21-Se02136	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
Endosulfan sulphate	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehvde	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
g-HCH (Lindane)	S21-Se02136	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
Heptachlor	S21-Se02136	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
Heptachlor epoxide	S21-Se02136	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
Hexachlorobenzene	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Se02136	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Se02136	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	021 0002100	01	i iiig/itg	<u> </u>	\ 0.0		0070	1 455	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Se02136	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<u></u>	30%	Pass	
Aroclor-1260	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	02: 0002:00	<u> </u>	199	1011	, , , , ,	**	0070		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se02136	СР	mg/kg	6.2	5.9	6.0	30%	Pass	
Cadmium	S21-Se02136	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se02136	CP	mg/kg	24	21	12	30%	Pass	
Copper	S21-Se02136	CP	mg/kg	27	29	4.0	30%	Pass	
Lead	S21-Se02136	CP	mg/kg	19	20	6.0	30%	Pass	
Mercury	S21-Se02136	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Zinc	S21-Se02136	CP	mg/kg	45	44	3.0	30%	Pass	
Duplicate	02: 0002:00	<u> </u>	199			0.0	0070		
				Result 1	Result 2	RPD			
% Moisture	S21-Se02136	СР	%	21	22	6.0	30%	Pass	
Duplicate						7.1		7 0.00	
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Se02140	СР	uS/cm	65	69	5.7	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Se00966	NCP	pH Units	10	9.6	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se02146	CP	mg/kg	2.1	2.8	31	30%	Fail	Q15
Cadmium	S21-Se02146	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se02146	CP	mg/kg	29	38	26	30%	Pass	
Copper	S21-Se02146	CP	mg/kg	26	24	10	30%	Pass	
Lead	S21-Se02146	CP	mg/kg	19	19	1.0	30%	Pass	
Mercury	S21-Se02146	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Se02146	CP	mg/kg	37	40	6.0	30%	Pass	
Zinc	S21-Se02146	CP	mg/kg	55	79	37	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Se02146	CP	%	10	13	23	30%	Pass	

Duplicate									
Total Recoverable Hydrocarb	ons			Result 1	Result 2	RPD			
TRH C10-C14	S21-Se02153	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Se02153	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Se02153	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Se02153	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Se02153	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Se02153	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se02156	СР	mg/kg	2.5	3.4	30	30%	Pass	
Cadmium	S21-Se02156	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se02156	CP	mg/kg	17	26	40	30%	Fail	Q15
Copper	S21-Se02156	CP	mg/kg	26	33	25	30%	Pass	
Lead	S21-Se02156	CP	mg/kg	78	87	12	30%	Pass	
Mercury	S21-Se02156	CP	mg/kg	0.1	0.1	13	30%	Pass	
Nickel	S21-Se02156	CP	mg/kg	24	34	37	30%	Fail	Q15
Zinc	S21-Se02156	CP	mg/kg	76	87	13	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Se02156	CP	%	13	13	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se02166	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S21-Se02166	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se02166	CP	mg/kg	6.1	8.9	38	30%	Fail	Q15
Lead	S21-Se02166	CP	mg/kg	16	20	20	30%	Pass	
Mercury	S21-Se02166	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Se02166	CP	mg/kg	< 5	9.1	72	30%	Fail	Q15
Zinc	S21-Se02166	CP	mg/kg	36	43	18	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
% Moisture	S21-Se02166	CP	%	5.1	6.8	28	30%	Pass	
Duplicate									
			1	Result 1	Result 2	RPD			
% Moisture	S21-Se02176	CP	%	12	9.6	21	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed N02

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

Asim Khan Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Charl Du Preez Senior Analyst-Inorganic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Jonathon Angell Senior Analyst-Inorganic (QLD)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

AARGUS PTY LTD

Lidcombe, NSW 2141 6 Carter Street

P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038

Laboratory Test Request / Chain of Custody Record

WG WP GV ATTN: Relinquished by MGT EUROFINS UNIT F3, BUILDING F 16 MARS ROAD Glass vial Water sample, glass bottle Water sample, plastic bottle 028215 6222 **LANE COVE WEST NSW 2066** BH10 BH11 BH4 BH5 BH6 BH6 BH6 BH7 BH8 BH8 BH8 BH8
 器
 器

 器
 器

 器
 器

 器
 3

 器
 3

 日本
 3

 日本 Sampling details 0.5-0.6 0.3-0.4 0.2-0.3 0.6-0.7 0.2-0.4 0.9-1 0.2-0.6 0.3-0.4 0.5-0.6 0.2-0.3 0.5-0.6 31.08.2021 Date FAX: Signature SBS Soil Sample type DSG OTH Water (Filled Up) 02 9420 2977 Undisturbed soil sample (glass ja Disturbed soil sample (glass jar) Air Email reports: cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net;sara@aargus.net
Email invoices: anika@aargus.net; cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; sara@aargus.net Metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn) Date 01.09.2021 < 4 Project Manager: Sampling Date: Sampled By: ACAN DSP TPH BTEXN Results required by: WEDNESDAY, 8TH SEPTEMBER 2021 Name Air sample, canister Disturbed soil sample (small plastic bag) Test required PAH M SBS 31.08.2021 OCP PCB Location: Project: Job No: Received by Signature GREENACRE DSI ES8338 pH, CEC &%Clay [®] mole H⁺/tonne B7, B13 M8 Analysis Suite(s) B7, B13 M8 B7 B7, B13 B7, B13 M8 B7, B13 B7, B13 B7, B13 B7, B13 B7, B13 Date **M8 M8** M8 **B7** M8 B7 M8 **M8 B7** 9 2

AARGUS PTY LTD

6 Carter Street Lidcombe, NSW 2141

P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038

Laboratory Test Request / Chain of Custody Record

Email reports: cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net;sara@aargus.net
Email invoices: anika@aargus.net; cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; sara@aargus.net

WG Water sample, glass bottle WP Water sample, plastic bottle	enend:	Saad	Name	Relinguished by	Rinsates	TripBlank	TripSpike	D2	D1	BH23	BH23	BH22	BH22	BH21	BH21	BH20	BH20	ВН19	BH19	BH18	BH18	BH17	BH17	BH16	BH16	BH15	BH15	BH14	BH14	Location	San	PH: 028215 6222 ATTN:	16 MARS ROAD LANE COVE WEST NSW 2066	UNIT F3, BUILDING F
ss bottle stic bottle									-	0.6-0.7	0.1-0.2	0.6-0.7	0.1-0.2	0.4-0.5	0-0.1	0.5-0.6	0.2-0.3	0.6-0.7	0.1-0.2	0.8-0.9	0.1-0.2	0.9-1	0.1-0.2	0.5-0.6	0.2-0.3	0.6-0.7	0.1-0.2	0.9-1	0.2-0.3	Depth (m)	Sampling details		T NSW 2066	G T
					04.08.2021	04.08.2021	04.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	31.08.2021	Date				
USG	000	SBS	Signature		Vial	Vial	Vial	DSG		Soil (Filled Up)	Sample type	FAX: 02																						
				1	a	a	a																							ater lled Air p)	type	02 9420 2977		
Undisturbed soil sample (glass jan)	01.09.2021	01 08 2021	Date		~			•	~		~	~	•		•	•	~	~	1	~	•	•	•	~	•	~	~	~	~	Metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn)		7		
DSP					<			~	~		~		~		~		~		~		~		~		~		~		^	ТРН		Project Manager:	Sampled By:	Sampling Date:
	Cum	Name	Non		~	Please test for TRH F1 and BTEX		< <	~		~		~		~		~		~		~		V		~		· ·		~	BTEXN	Resu	lanager:	Ву:	Date:
Disturbed soil	1	व			~	est for T	The second second	~	~		~		~		~		~		~		~		~		~		~		~	PAH	ılts rec			
soil sampl						RH F1		~	~																				~	OÇ P	uired I	MX	SBS	31.08.2021
Disturbed soil sample (small plastic bag) Test required						and BTI																									by: WE			2021
astic bag)						\mathbb{Z}		1	1																				1	PCB	DNES			
\	1	Signature	Received by	- Possible b																											DAY, 8TH	Location:	Project:	Job No:
		ature	9																												Results required by: WEDNESDAY, 8TH SEPTEMBER 2021	GREENACRE	DSI	ES8338
																		<												pH, CEC &%Clay	3ER 2021			
@																																		
[®] mole H ⁺ /tonne	121	Date	,	B/	P7		0.10.00	B7. B13	B7, B13		В7	M8	В7		В7	M8	B7, B13	Analysis Suite(s)																
nne				150	VE 2	YES	VES.	YES	KEEP SAMPLE?																									

APPENDIX O

SUMMARY OF RESULTS

TABLE 2 SCHEDULE OF LABORATORY TESTING

Analyte /	Analyte Group		SAMPLING DATE	DUPLICATE	SPLIT	MET-8	TRH	BTEXN	PAH TRACE
Sample	Depth (m)								
Groundwater									
GW1	-	GW	02.09.2021	GWD1	GWSS1	>	~	~	~
GW2	-	GW	02.09.2021			>	>	~	~
GW5	-	GW	02.09.2021			>	>	~	~

Notes MET-8: arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc

PAH: Polycyclic Aromatic Hydrocarbons
TPH: Total Petroleum Hydrcarbons

BTEX: Benzene, Toluene, Ethyl Benzene, Xylene

GW: Groundwater

TABLE E HEAVY METALS TEST RESULTS

	Analyte				HEAVY N	ИETALS (µ	ıg/L)		
Sample Location		ARSENIC (As) - Total	САБМІИМ (Сd)	CHROMIUM (Cr) - Total	COPPER (Cu)	LEAD (Pb)	MERCURY (Hg) - Total	NICKEL (Ni)	ZINC (Zn)
GW1	-	1	0.3	< 1	2	< 1	< 0.1	6	< 5
GW2	-	110	< 0.2	< 1	< 1	< 1	< 0.1	25	< 5
GW5	-	5	0.5	< 1	1	< 1	< 0.1	11	< 5
DUPLICATE GWD1	-	2	0.3	< 1	2	< 1	< 0.1	6	< 5
SPLIT GWSS1	-	2	0.1	3	< 1	< 1	< 0.1	6	< 5
Practical Quantitation Lin	nits (PQL)	1	0.2	1	1	1	0.1	1	5
ANZECC & ARMCANZ a Aquatic Ecosystems (Trig		resh and	Marine Wa	ter Quality	(2000)				
Fresh Water		24 ^b 13 ^c	0.2	NV ^d 1 ^e	1.4	3.4	0.06	11	8
Water for recreational pu	<u>rposes</u>	<u>50</u>	<u>5</u>	<u>50</u>	<u>1000</u>	<u>50</u>	<u>1</u>	<u>100</u>	<u>5000</u>

Notes a: Investigation levels apply to typical slightly-moderated disturbed systems.

b: as As (III)
c: as As (V)
d: as Cr (III)
e: as Cr (VI)
NV: No value derived

TABLE F **BTEX TEST RESULTS**

	Analyte		В	ΓΕΧ (μg/L	-)	
		BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	STYRENE (Vinyl Benzene)
Sample Location						
GW1	-	<1	<1	<1	<3	-
GW2	-	<1	<1	<1	<3	-
GW5	-	<1	<1	<1	<3	-
DUPLICATE GWD1	_	<1	<1	<1	<3	-
SPLIT GWSS1	-	<1	<2	<2	<2	
Practical Quantitation Lim	its (PQL)	1	1	1	3	=
ANZECC & ARMCANZ a	Guidelines for Fro	esh and Ma	rine Wate	er Quality	/ (2000)	
Aquatic Ecosystems (Trig	ger Values)					
Fresh water		950	NV	NV	350 ^b	NV
					200 ^c	
Water for recreational pur	<u>poses</u>	<u>10</u>				
Notos		Investigation				

Investigation levels apply to typical slightly-moderated disturbed systems. Notes a:

b: as o-xylene c: as p-xylene NV: No value derived

TABLE G
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS
FOR GROUNDWATER HSLs IN CLAY

Analyte	TRH	(mg/L)			BTEX (mg/L)	
Sample Location Depth (m)	F1 ^a	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
GW1 -	< 0.02	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	< 0.01
GW2 -	< 0.02	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	< 0.01
GW5 -	< 0.02	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	< 0.01
DUPLICATE GWD1 -	< 0.02	< 0.05	< 0.001	< 0.001	< 0.001	< 0.003	< 0.01
SPLIT GWSS1 -	< 0.02	< 0.1	< 0.001	< 0.002	< 0.002	< 0.002	<0.005
Practical Quantitation Limits (PQL)	0.02	0.05	0.001	0.001	0.001	0.003	0.01
NATIONAL ENVIRONMENT PROTECTION MEASURI Health Screening Levels (HSL) - Table 1A (4) HSL A & HSL B: Low-high density residential	E (2013)						
Source depth - 2m to <4m	NL	NL	5	NL	NL	NL	NL
Source depth - 4m to <8m	NL	NL	5	NL	NL	NL	NL
Source depth - 8m +	NL	NL	5	NL	NL	NL	NL
HSL C: recreational / open space							
Source depth - 2m to <4m	NL	NL	NL	NL	NL	NL	NL
Source depth - 4m to <8m	NL	NL	NL	NL	NL	NL	NL
Source depth - 8m +	NL	NL	NL	NL	NL	NL	NL
HSL D: Commercial / Industrial							
Source depth - 2m to <4m	NL	NL	30	NL	NL	NL	NL
Source depth - 4m to <8m	NL	NL	30	NL	NL	NL	NL
Source depth - 8m +	NL	NL	35	NL	NL	NL	NL

Notes a: To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

b: To obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction.

NL: Not Limiting

TABLE H PAH TEST RESULTS

Analyte			PAH (μg/L)	
Sample Location	NAPHTHALENE	ANTHRACENE	PHENANTHRACENE	FLUORANTHENE	BENZO(a)PYRENE
GW1 -	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
GW2 -	0.05	< 0.01	0.14	< 0.01	< 0.01
GW5 -	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
DUPLICATE GWD1 -	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SPLIT GWSS1 -	0.04	<0.02	0.06	<0.02	<0.005
Practical Quantitation Limits (PQL)	0.01	0.01	0.01	0.01	0.01
NEPM 2013 Table 1C - Groundwater Investigation	Levels (GI	Ls)			
Aquatic Ecosystems Fresh	16	NV	NV	NV	NV
ANZECC 2000 Low Reliability Trigger Values					
Freshwater	-	0.01	0.6	1	0.1
Guidelines for Managing Risk in Recreatinoal Wa	ters (2008)				
Water for recreational purpose	<u>NV</u>	<u>NV</u>	<u>NV</u>	<u>NV</u>	<u>0.1</u>

NV: No Value derived Notes

TABLE 1
SCHEDULE OF LABORATORY TESTING

Analyte	/ Analyte Group	SAMPLING	DUPLICATE	SPLIT	MET-8	TPH	BTEX	PAH	ос	PCB	ASBESTOS	pH, CEC,
		DATE	DUPLICATE	SPLII	IVIE I -0	IPH	DIEX	РАП	OC.	РСВ	ASBESTOS	%CLAY
Sample	Depth (m)											
BH1	0.3-0.4	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH1	0.5-0.6	31.08.2021			✓							
BH2	0.3-0.4	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH2	0.5-0.6	31.08.2021										
BH3	0.2-0.3	31.08.2021			✓	✓	✓	✓			~	
BH3	0.6-0.7	31.08.2021			✓							~
BH4	0.2-0.4	31.08.2021	D2	SS2	✓	✓	✓	✓	✓	✓	~	
BH4	0.9-1	31.08.2021			✓							
BH5	0.2-0.5	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH5	0.4-0.5	31.08.2021			✓							
BH6	0.2-0.6	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH6	0.5-0.6	31.08.2021										
BH7	0.3-0.4	31.08.2021	D1	SS1	✓	✓	✓	✓	✓	✓	~	
BH7	0.8-0.9	31.08.2021			✓							
BH8	0-0.1	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH8	0.3-0.4	31.08.2021			✓							
BH9	0.2-0.3	31.08.2021			✓	✓	✓	✓			~	
BH9	0.5-0.6	31.08.2021										
BH10	0.3-0.4	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH10	0.4-0.5	31.08.2021			✓							
BH11	0.2-0.3	31.08.2021			✓	✓	✓	✓			~	
BH11	0.4-0.5	31.08.2021										
BH12	0.3-0.4	31.08.2021			✓	✓	✓	✓			~	
BH12	0.5-0.6	31.08.2021			✓							>
BH13	0.2-0.3	31.08.2021			✓	✓	✓	~	✓	~	>	
BH13	0.5-0.6	31.08.2021			✓							
BH14	0.2-0.3	31.08.2021			✓	✓	✓	✓	✓	✓	~	
BH14	0.9-1	31.08.2021			✓							
BH15	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH15	0.6-0.7	31.08.2021			✓							
BH16	0.2-0.3	31.08.2021			✓	✓	✓	✓			~	
BH16	0.5-0.6	31.08.2021			✓							
BH17	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH17	0.9-1	31.08.2021			✓							
BH18	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH18	0.8-0.9	31.08.2021			✓							
BH19	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH19	0.6-0.7	31.08.2021			✓							~
BH20	0.2-0.3	31.08.2021			✓	✓	✓	✓			~	
BH20	0.5-0.6	31.08.2021			✓							
BH21	0-0.1	31.08.2021			✓	✓	✓	✓			~	
BH21	0.4-0.5	31.08.2021										
BH22	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH22	0.6-0.7	31.08.2021			✓							
BH23	0.1-0.2	31.08.2021			✓	✓	✓	✓			~	
BH23	0.6-0.7	31.08.2021										
			<u> </u>								<u> </u>	

TABLE A1
HEAVY METALS TEST RESULTS FOR HILS & EILS

	Analyte				HEAVY ME	TALS (me	g/kg)		
	·						J '31		
	_								
		ပ	≥	CHROMIUM	r	g	≿		
		E N	ME	Θ.	Ä	LEAD	CO	Ē	()
Sample Location	Depth (m)	ARSENIC	САБМІИМ	CH.	COPPER	_	MERCURY	NICKEI	ZINC
BH1	0.3-0.4	6.2	< 0.4	24	27	19	< 0.1	13	45
BH1	0.5-0.6	4.7	< 0.4	10	33	18	< 0.1	10	68
BH2	0.3-0.4	3	< 0.4	23	25	13	< 0.1	23	40
BH3	0.2-0.3	< 2	< 0.4	7.3	15	130	< 0.1	6.5	72
BH3	0.6-0.7	3.9	< 0.4	11	23	24	< 0.1	6	48
BH4	0.2-0.4	6.4	< 0.4	24	25	53	< 0.1	18	110
BH4	0.9-1	6.6	< 0.4	19	27	13	< 0.1	12	57
BH5	0.2-0.5	76	< 0.4	35	18	320	< 0.1	12	56
BH5	0.4-0.5	11	< 0.4	21	25	15	< 0.1	6.2	38
BH6	0.2-0.6	5.2	< 0.4	22	18	18	0.2	11	41
BH7	0.3-0.4	2.1	< 0.4	29	26	19	< 0.1	37	55
BH7	0.8-0.9	2.9	< 0.4	7.7	20	17	< 0.1	8.2	72
BH8	0-0.1	< 2	< 0.4	180	43	20	< 0.1	7.5	270
BH8	0.3-0.4	4.5	< 0.4	16	32	18	< 0.1	< 5	31
BH9	0.2-0.3	4.4	< 0.4	17	18	23	< 0.1	8.5	98
BH10	0.3-0.4	4	< 0.4	63	34	12	< 0.1	58	98
BH10	0.4-0.5	4.7	< 0.4	16	19	24	< 0.1	5.5	30
BH11	0.2-0.3	8.5	< 0.4	22	19	24	< 0.1	7.9	42
BH12	0.3-0.4	4.7	< 0.4	44	25	12	< 0.1	37	64
BH12	0.5-0.6	8	< 0.4	20	23	12	< 0.1	9.1	52
BH13	0.2-0.3	2.5	< 0.4	17	26	78	0.1	24	76
BH13	0.5-0.6	6.3	< 0.4	24	22	16	< 0.1	7.9	47
BH14	0.2-0.3	3.3	< 0.4	13	18	17	< 0.1	12	60
BH14	0.9-1	7.5	< 0.4	25	22	17	< 0.1	7.9	49
BH15	0.1-0.2	2.8	< 0.4	12	20	45	< 0.1	14	88
BH15	0.6-0.7 0.2-0.3	3.8	< 0.4	11	12	26	< 0.1	5.9	40
BH16	0.2-0.3	3.7	< 0.4	18 17	16 17	24 13	< 0.1	13	49 37
BH16		4.9	< 0.4		17		< 0.1	7.6 5.6	
BH17 BH17	0.1-0.2 0.9-1	3.6 7	< 0.4 < 0.4	6.7 15	9.5 21	26 15	< 0.1 < 0.1	6	36 31
	0.1-0.2	< 2	< 0.4	6.1	13	16	< 0.1	< 5	36
BH18 BH18	0.8-0.9	6.6	< 0.4	18	21	20	< 0.1	9.7	43
BH19	0.1-0.2	4	< 0.4	12	23	84	< 0.1	11	130
BH19	0.6-0.7	3.9	< 0.4	15	32	84	< 0.1	11	220
BH20	0.2-0.3	3.7	< 0.4	13	21	16	< 0.1	< 5	26
BH20	0.5-0.6	9.9	< 0.4	29	19	19	< 0.1	6.3	31
BH21	0-0.1	4.8	< 0.4	11	25	25	< 0.1	12	74
BH22	0.1-0.2	2.7	< 0.4	13	17	14	< 0.1	13	43
BH22	0.6-0.7	7.5	< 0.4	7.8	19	13	< 0.1	< 5	17
BH23	0.1-0.2	6.7	< 0.4	11	39	90	< 0.1	20	170
DUPLICATE D1	· · · · ·	4.1	< 0.4	32	39	17	< 0.1	53	63
DUPLICATE D2	-	6.6	< 0.4	33	33	28	< 0.1	27	81
SPLIT SS1	-	<5	<1	18	18	20	< 0.1	22	23
SPLIT SS2	-	<5	<1	60	51	11	< 0.1	58	61
Practical Quantitation Lim	nits (PQL)	2	0.4	5	5	5	0.1	5	5
	, ,								
	ENT PROTECTION MEASURE (20	13)							
Health Investigation Lev	rels (HIL) - Table 1A (1)	400		400	0000	000	40 ^e / 40 ^f	400	7.00
HIL A a		100	20	100	6000	300	40 ^e / 10 ^f	400	7400
HIL B b		500	150	500	30,000	1,200	120 ^e / 30 ^f	1200	60,000
HIL C °		300	90	300	17,000	600 1,500	80 ^e / 13 ^t	1200	30,000
HIL D ^d		3000	900	3600	240,000	1,500	730 ^e / 180 ^f	6000	400,000
Ecological Investigation	Levels (EIL) - Table 1B (5)								
Areas of ecological signif	ficance	40 ^h	_						
Urban residential and put	blic open space i	100 ^h							
Commercial and industria	al	160 ^h							

- Notes a: Residential with garden/accessible soil (home grown poduce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.
 - b: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments.
 - c: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate
 - d: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites
 - e: Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,
 - f: Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition the reliability and quality of sampling/analysis should be considered.
 - g: Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
 - h: Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
 - i: Urban residential / public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

TABLE A2
CATION EXCHANGE CAPACITY (CEC), % CLAY & pH TEST RESULTS
FOR THE SOIL PROPERTIES FOR EILS

	Analyte	CEC (cmol/kg)	% CLAY (%)	pH (pH units)
Sample Location	Depth (m)			
внз	0.6-0.7	17	27	5.7
BH12	0.5-0.6	14	32	6.5
BH19	0.6-0.7	18	19	7.1

TABLE A3
SITE DERIVED EILS

	Analyte		HEAVY MET	ALS (mg/kg)	
Sample Location	Depth (m)	COPPER	LEAD	NICKEL	ZINC
Added Contaminant Li					
ВН3	0.6-0.7	130	1100	270	270
BH12	0.5-0.6	190	1100	170	400
BH19	0.6-0.7	210	1100	270	700
Ambient Background (Concentration (ABC)				
BH3	0.6-0.7	23	24	6	48
BH12	0.5-0.6	23	12	9.1	52
BH19	0.6-0.7	32	84	11	220
Calculated EIL (ABC +	ACL)				
BH3	0.6-0.7	153	1124	276	318
BH12	0.5-0.6	213	1112	179.1	452
BH19	0.6-0.7	243	1184	281	920
FINAL SITE EIL AFTER	ROUNDING b				
BH3	0.6-0.7	150	1100	280	320
BH12	0.5-0.6	210	1100	180	450
BH19	0.6-0.7	240	1100	280	920

Notes a: The ACL for Cu may be determined by pH or CEC and the lower of the determined values should be selected for EIL calculation.

b: The following rounding rules are applicable to the EILs:

<1 to nearest 0.1
1 - <10 to nearest interger
10 - <100 to nearest 5
100 - <1000 to nearest 10
>1000 to nearest 100

TABLE A4
METAL TEST RESULTS FOR EILs

		Analyte		HEAVY MET	ALS (mg/kg)	
_	_					
		_	Ä	0	ᆸ	
0 11 "	5 4 ()		COPPER	EAD	NICKEL	ZINC
Sample Location	Depth (m)					
BH1	0.3-0.4		27	19	13	45
BH1	0.5-0.6		33	18	10	68
BH2	0.3-0.4		25	13	23	40
BH3	0.2-0.3		15	130	6.5	72
BH3	0.6-0.7		23	24	6	48
BH4	0.2-0.4		25	53	18	110
BH4	0.9-1		27	13	12	57
BH5	0.2-0.5		18	320	12	56
BH5	0.4-0.5		25	15	6.2	38
BH6	0.2-0.6		18	18	11	41
BH7	0.3-0.4		26	19	37	55
BH7	0.8-0.9		20	17	8.2	72
BH8	0-0.1		43	20	7.5	270
BH8	0.3-0.4		32	18	< 5	31
BH9	0.2-0.3		18	23	8.5	98
BH10	0.3-0.4		34	12	58	98
BH10	0.4-0.5		19	24	5.5	30
BH11	0.2-0.3		19	24	7.9	42
BH12	0.3-0.4		25	12	37	64
BH12	0.5-0.6		23	12	9.1	52
BH13	0.2-0.3		26	78	24	76
BH13	0.5-0.6		22	16	7.9 12	47
BH14	0.2-0.3 0.9-1		18 22	17 17	7.9	60 49
BH14	0.9-1					
BH15	0.1-0.2		20 12	45 26	14 5.9	88 40
BH15	0.2-0.3		16	24	13	49
BH16						
BH16 BH17	0.5-0.6 0.1-0.2		17 9.5	13 26	7.6 5.6	37 36
	0.1-0.2		9.5 21	26 15	5.6 6	31
BH17 BH18	0.9-1		13	16	ە < 5	36
BH18	0.1-0.2		21	20	9.7	43
BH18 BH19	0.1-0.2		23	84	11	130
BH19	0.6-0.7		32	84	11	220
BH20	0.2-0.3		21	16	< 5	26
ВH20 ВH20	0.5-0.6		19	19	6.3	31
BH21	0-0.1		25	25	12	74
BH22	0.1-0.2		17	14	13	43
BH22	0.6-0.7		19	13	< 5	17
BH23	0.1-0.2		39	90	20	170
DUPLICATE D1	-		39	17	53	63
DUPLICATE D2	-		33	28	27	81
SPLIT SS1	-		18	20	22	23
SPLIT SS2	-		51	11	58	61
Practical Quantitation Limits	(POL)	5	5	5	5	
Site Derived Ecological Ir	ivestigation Levels (EIL)		150	1100	180	320

Notes a: none

TABLE B1
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS
FOR HSLs IN CLAY

	Analyte	TDII	(ma/ks)			DTCV	(ma/ks)	
\	, many to	IRH	(mg/kg)				(mg/kg)	
Sample Location	Depth (m)	F1 ^a	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
				0.4	0.4	0.4	0.0	0.5
BH1 BH2 BH3 BH4	0.3-0.4 0.3-0.4 0.2-0.3 0.2-0.4	< 20 < 20 < 20 < 20	< 50 < 250 < 250 < 50	< 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5 < 0.5
BH5 BH6	0.2-0.5 0.2-0.6	< 20 < 20	< 50 < 50	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.3 < 0.3	< 0.5 < 0.5
BH7 BH8 BH9	0.3-0.4 0-0.1 0.2-0.3	< 20 < 20 < 20	< 250 < 250 < 50	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5
BH10 BH11 BH12	0.3-0.4 0.2-0.3 0.3-0.4	< 20 < 20	< 50 < 50 < 50	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5
BH13 BH14	0.2-0.3 0.2-0.3	< 20 < 20 < 20	< 250 < 50	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.3 < 0.3	< 0.5 < 0.5
BH15 BH16 BH17	0.1-0.2 0.2-0.3 0.1-0.2	< 20 < 20 < 20	< 50 < 50 < 50	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5
BH18 BH19 BH20	0.1-0.2 0.1-0.2 0.2-0.3	< 20 < 20 < 20	< 50 < 50 < 50	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5
BH21 BH22 BH23	0-0.1 0.1-0.2 0.1-0.2	< 20 < 20 < 20	< 50 < 50 < 250	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.3 < 0.3 < 0.3	< 0.5 < 0.5 < 0.5
DUPLICATE D1 DUPLICATE D2	-	< 20 < 20	< 250 < 50	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.3 < 0.3	< 0.5 < 0.5
SPLIT SS1 SPLIT SS2	-	< 10 < 10	< 50 < 50	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.5 < 0.5	< 1 < 1
Practical Quantitation Limits (F	PQL)	20	50	0.1	0.1	0.1	0.3	0.5
NATIONAL ENVIRONMENT F Health Screening Levels (HS HSL A & HSL B: Low-high de	SL) - Table 1A (3)	E (2013)						
Source depth - 0m to <1m		50	280	0.7	480	NL	110	5
Source depth - 1m to <2m		90	NL	1	NL	NL	310	NL
Source depth - 2m to <4m		150	NL	2	NL	NL	NL	NL
Source depth - 4m + HSL C: recreational / open sp Source depth - 0m to <1m	ace	290 NL	NL NL	3 NL	NL NL	NL NL	NL NL	NL NL
Source depth - 1m to <2m Source depth - 2m to <4m		NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL
Source depth - 4m +		NL	NL	NL	NL	NL	NL	NL
HSL D: Commercial / Industria Source depth - 0m to <1m	त्र। 	310	NL	4	NL	NL	NL	NL
Source depth - 1m to <2m		480	NL NL	6	NL	NL	NL	NL NL
Source depth - 2m to <4m Source depth - 4m +		NL NL	NL NL	9 20	NL NL	NL NL	NL NL	NL NL
223.00 000 11111				0				

To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

b: To obtain F2 subtract naphthalene from the $>C_{10}$ - C_{16} fraction.

NL: Not Limiting

TABLE B2
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND BENZO(a)PYRENE TEST RESULTS
ESLs FOR FINE GRAINED SOIL TEXTURE

	Analyte	TRH (mg/kg)				BTEX (mg/kg)				PAH (mg/kg)
Sample Location	Depth (m)	F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^b	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	BENZO(a)PYRENE
BH1	0.3-0.4	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	105
						-				< 0.5
BH2 BH3	0.3-0.4 0.2-0.3	< 20 < 20	< 250 < 250	< 500 < 500	< 500 < 500	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.3	< 0.5 < 0.5
ВН3 ВН4	0.2-0.3	< 20	< 250 < 50			< 0.1 < 0.1	< 0.1		< 0.3	
ВН4 ВН5	0.2-0.4	< 20	< 50 < 50	100 120	< 100 < 100	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.3 < 0.3	< 0.5 0.8
BH6	0.2-0.6	< 20	< 50 < 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	0.8 < 0.5
BH7	0.3-0.4	< 20	< 250	< 500	< 500	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH8	0-0.1	< 20	< 250	< 500	< 500	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH9	0.2-0.3	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH10	0.3-0.4	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH11	0.2-0.3	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH12	0.3-0.4	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH13	0.2-0.3	< 20	< 250	< 500	< 500	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH14	0.2-0.3	< 20	< 50	280	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH15	0.1-0.2	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH16	0.2-0.3	< 20	< 50	150	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH17	0.1-0.2	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH18	0.1-0.2	< 20	< 50	130	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH19	0.1-0.2	< 20	< 50	110	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH20	0.2-0.3	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH21	0-0.1	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH22	0.1-0.2	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
BH23	0.1-0.2	< 20	< 250	620	< 500	< 0.1	< 0.1	< 0.1	< 0.3	0.8
DUPLICATE D1	-	< 20	< 250	< 500	< 500	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
DUPLICATE D2	-	< 20	< 50	< 100	< 100	< 0.1	< 0.1	< 0.1	< 0.3	< 0.5
SPLIT SS1	-	< 10	< 50	120	120	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5
SPLIT SS2	-	< 10	< 50	140	170	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5
Practical Quantitation Limits (PQL)		20	50	100	100	0.1	0.1	0.1	0.3	0.5
NATIONAL ENVIRONMENT PR	3)									
Ecological Screening Levels (ESL) - Table 1B (6)									
Areas of ecological significance			25 [*]	-	-	10	65	40	1.6	0.7
Urban residential and public open space		180 [*]	120 [*]	1300	5600	65	105	125	45	0.7
Commercial and industrial		215*	170 [*]	2500	6600	95	135	185	95	1.4

a: To obtain F1 subtract the sum of BTEX concentrations from the $C_6\text{-}C_{10}$ fraction.

b: To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

^{*:} ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

[&]quot;-": "-" indicates that insufficient data was available to derive a value.

TABLE B3
TOTAL RECOVERABLE HYDROCARBONS (TRH) TEST RESULTS
MANAGEMENT LIMITS FOR FINE GRAINED SOIL TEXTURE

	Analyte		TRH (ı	mg/kg)	
			rs.		
		F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^a	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)
Sample Location	Depth (m)				
BH1	0.3-0.4	< 20	< 50	< 100	< 100
BH2	0.3-0.4	< 20	< 250	< 500	< 500
BH3	0.2-0.3	< 20	< 250	< 500	< 500
BH4	0.2-0.4	< 20	< 50	100	< 100
BH5	0.2-0.5	< 20	< 50	120	< 100
ВН6	0.2-0.6	< 20	< 50	< 100	< 100
BH7	0.3-0.4	< 20	< 250	< 500	< 500
ВН8	0-0.1	< 20	< 250	< 500	< 500
ВН9	0.2-0.3	< 20	< 50	< 100	< 100
BH10	0.3-0.4	< 20	< 50	< 100	< 100
BH11	0.2-0.3	< 20	< 50	< 100	< 100
BH12	0.3-0.4	< 20	< 50	< 100	< 100
BH13	0.2-0.3	< 20	< 250	< 500	< 500
BH14	0.2-0.3	< 20	< 50	280	< 100
BH15	0.1-0.2	< 20	< 50	< 100	< 100
BH16	0.2-0.3	< 20	< 50	150	< 100
BH17	0.1-0.2	< 20	< 50	< 100	< 100
BH18	0.1-0.2	< 20	< 50	130	< 100
BH19	0.1-0.2	< 20	< 50	110	< 100
BH20	0.2-0.3	< 20	< 50	< 100	< 100
BH21	0-0.1	< 20	< 50	< 100	< 100
BH22	0.1-0.2	< 20	< 50	< 100	< 100
BH23	0.1-0.2	< 20	< 250	620	< 500
DUPLICATE D1	-	< 20	< 250	< 500	< 500
DUPLICATE D2	-	< 20	< 50	< 100	< 100
SPLIT SS1	-	< 10	< 50	120	120
SPLIT SS2	-	< 10	< 50	140	170
Practical Quantitation Limits (P	QL)	20	50	100	100
NATIONAL ENVIRONMENT P	· ·	2013)			
Management Limits - Table 1		000	4000	0500	40.000
Residential parkland and public Commercial and industrial	c open space	800 800	1000 1000	3500 5000	10,000 10,000

a: Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

b: Management limits are applied after consideration of relevant ESLs and HSLs.

 ${\bf TABLE~C} \\ {\bf POLYCYCLIC~AROMATIC~HYDROCARBONS~(PAH)~TEST~RESULTS~FOR~HILs,~EILs~\&~ESLs~} \\$

	Analyte		DAL	I (ma/ka)	 1
	Allayte		PAF	I (mg/kg)	
	_				
		Carcinogenic PAHs (as BaP TEQ) [®]	TOTAL PAHs '	BENZO(a)PYRENE	NAPHTHALENE
Sample Location	Depth (m)	Carı (as	101	BEN	A A
BH1	0.3-0.4	0.6	< 0.5	< 0.5	<0.5
BH2	0.3-0.4	0.6	< 0.5	< 0.5	<0.5
BH3	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH4	0.2-0.4	0.6	< 0.5	< 0.5	<0.5
BH5	0.2-0.5	1.3	7.3	0.8	<0.5
BH6	0.2-0.6	0.6	< 0.5	< 0.5	<0.5
BH7	0.3-0.4	0.6	< 0.5	< 0.5	<0.5
BH8	0-0.1	0.6	< 0.5	< 0.5	<0.5
BH9	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH10	0.3-0.4	0.6	< 0.5	< 0.5	<0.5
BH11	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH12	0.3-0.4	0.6	< 0.5	< 0.5	<0.5
BH13	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH14	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH15	0.1-0.2	0.6	< 0.5	< 0.5	<0.5
BH16	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH17	0.1-0.2	0.6	< 0.5	< 0.5	<0.5
BH18	0.1-0.2	0.6	< 0.5	< 0.5	<0.5
BH19	0.1-0.2	0.6	1.5	< 0.5	<0.5
BH20	0.2-0.3	0.6	< 0.5	< 0.5	<0.5
BH21	0-0.1	0.6	< 0.5	< 0.5	<0.5
BH22	0.1-0.2	0.6	< 0.5	< 0.5	<0.5
BH23	0.1-0.2	1.3	5.9	0.8	<0.5
DUPLICATE D1	-	0.6	< 0.5	< 0.5	<0.5
DUPLICATE D2	_	0.6	< 0.5	< 0.5	<0.5
SPLIT SS1	_	0.6	< 0.5	< 0.5	<0.5
SPLIT SS2	_	0.6	< 0.5	< 0.5	<0.5
	+- (POL)	0.5	0.5	0.5	0.5
Practical Quantitation Limi	ts (PQL)	0.5	0.5	0.5	0.5
	NT PROTECTION MEASURE (2013)	1			
Health Investigation Lev	els (HIL) - Table 1A (1)				
HIL A ^a		3	300		
HIL B b		4	400		
HIL C °		3	300		
HIL D ^d		40	4000		
Ecological Investigation	Levels (EIL) - Table 1B (5)				
Areas of ecological signifi	1		_	10 ^g	
Urban residential and pub	lic open space ^h				170 ^g
Commercial and industria	I				370 ^g
Ecological Screening Le	vels (ESL) - Table 1B (6)	1			
Areas of ecological signifi		1		0.7	
Urban residential and pub				0.7 i	
Commercial and industria				1.4	
Commercial and industria	1			1.7	

Notes a: Residential with garden/accessible soil (home grown poduce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

- Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments.
- c: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.
- d: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.
- e: Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant

- reatin risk.

 Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.
- g: Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.
- h: Urban residential / public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- i: For coarse and fine grained texture soils.

TABLE D

ORGANOCHLORINE PESTICIDES (OCP) AND POLYCHLORINATED BIPHENYLS (PCB) TEST RESULTS
FOR HILS & EISLS

	Analyte			Organo	chlorine Pe	sticides (n	ng/kg)			
						,	0 0,			
Sample Location	Depth (m)	DDT + DDE + DDD	ALDRIN & DIELDRIN	CHLORDANE	ENDOSULFAN	ENDRIN	HEPTACHLOR	НСВ	METHOXYCHLOR	₅ BOd
BH1	0.3-0.4	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
BH2	0.3-0.4	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
BH4	0.2-0.4	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
BH5	0.2-0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
BH6	0.2-0.6	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
BH7	0.3-0.4	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
BH8	0-0.1	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
BH10	0.3-0.4	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
BH13	0.2-0.3	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
BH14	0.2-0.3	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
DUPLICATE D1	-	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
DUPLICATE D2	-	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1
SPLIT SS1	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.1
SPLIT SS2	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.2	< 0.1
Practical Quantitation Limits	s (PQL)	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.1
Health Investigation Leve	NT PROTECTION MEASURE (2013) Pels (HIL) - Table 1A (1)									
HIL A a		240	6	50	270	10	6	10	300	1
HIL B ^b		600	10	90	400	20	10	15	500	1
HIL C °		400	10	70	340	20	10	10	400	1
HIL D ^d		3600	45	530	2000	100	50	80	2500	7
Ecological Investigation Levels (EIL) - Table 1B (5)										
Areas of ecological significance		3 ^{e, h}								
Urban residential and public open space ^f		180 ^{e, h}								
Commercial and industrial		640 ^{e, h}	_							
Notes a Resid	lential with garden/accessible soil (bo									

- Residential with garden/accessible soil (home grown poduce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.
- b: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments.
- c: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate
- d: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites
- e: Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.
- f: Urban residential / public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- g: PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken.
- h: For DDT only.

TABLE E ASBESTOS TEST RESULTS

	Analyte					
	_	Field Observations*	Material Sampled	Laboratory Results	Type of Asbestos	Laboratory Results
		Visible ACM detected (>7mm)	for Analysis	Asbestos Present / Absent	Present	Asbestos %w/w
Sample Location	Depth (m)					
BH1	0.3-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH2	0.3-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH3	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH4	0.2-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH5	0.2-0.5	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH6	0.2-0.6	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH7	0.3-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH8	0-0.1	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH9	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH10	0.3-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH11	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH12	0.3-0.4	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH13	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH14	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH15	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH16	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH17	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH18	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH19	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH20	0.2-0.3	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH21	0-0.1	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH22	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
BH23	0.1-0.2	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
DUPLICATE D1		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
DUPLICATE D2		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
SPLIT SS1		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
SPLIT SS2		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
WA Guidelines for the	Assessment, Remediat	ion and Management of Asbest	os - Contaminate	d Sites in Western Australia - May	2009	
National Environment F	Protection (Assessmen	nt of Site Contamination) Measu	re 2013 Schedule	B1		
%w/w asbestos for FA and A	0.001%					
%w/w asbestos for ACM - R		0.01%				
%w/w asbestos for ACM - R		0.04%				
%w/w asbestos for ACM - Parks, public open spaces, playing fields etc.						0.02%
%w/w asbestos for ACM - C		0.05%				
All forms of Asbestos					No visible as	sbestos for surface soils

All forms of Asbestos

Note:

ACM = Asbestos Containing Materials >7mm x 7mm (visible by eye)

FA = Friable and Fibrous Asbestos Materials >7mm x 7mm and <7mm x 7mm

AF = Asbestos Fines <7mm x 7mm ACM including free fibres (visible by microscope only)

* Field Observations: All ACM observed are assumed to contain Asbestos until otherwise tested and recorded as such.

NT = Not Tested

APPENDIX P

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Aargus (Australia) Pty Ltd and its associated companies using guidelines prepared by ASFE (The Association) of Engineering Firms Practising in the Geo-sciences. They are offered to help you in the interpretation of your Environmental Site Assessment (ESA) reports.

REASONS FOR CONDUCTING AN ESA

ESA's are typically, though not exclusively, carried out in the following circumstances:

- as pre-acquisition assessments, on behalf of either purchaser or vender, when a property is to be sold;
- as pre-development assessments, when a property or area of land is to be redeveloped or have its use changed for example, from a factory to a residential subdivision;
- as pre-development assessments of greenfield sites, to establish "baseline" conditions and assess environmental, geological and hydrological constraints to the development of, for example, a landfill; and
- as audits of the environmental effects of an ongoing operation.

Each of these circumstances requires a specific approach to the assessment of soil and groundwater contamination. In all cases however, the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the proposed activity. Such risks may be both financial, for example, cleanup costs or limitations on site use, and physical, for example, health risks to site users or the public.

THE LIMITATIONS OF AN ESA

Although the information provided by an ESA could reduce exposure to such risks, no ESA, however, diligently carried out can eliminate them. Even a rigorous professional assessment may fail to detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled,

or may migrate to areas which showed no signs of contamination when sampled.

AN ESA REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

Your environmental report should not be used:

- when the nature of the proposed development is changed, for example, if a residential development is proposed instead of a commercial one;
- when the size or configuration of the proposed development is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership
- or for application to an adjacent site.

To help avoid costly problems, refer to your consultant to determine how any factors, which have changed subsequent to the date of the report, may affect its recommendations.

ESA "FINDINGS" ARE PROFESSIONAL ESTIMATES

assessment identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of contamination. its likely impact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, The actual interface between rock and time. materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to help minimise its impact. For this reason owners should retain the services of their consultants

through the development stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Natural processes and the activity of man change subsurface conditions. As an ESA report is based on conditions, which existed at the time of subsurface exploration, decisions should not be based on an ESA report whose adequacy may have been affected by time. Speak with the consultant to learn if additional tests are advisable.

ESA SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Every study and ESA report is prepared in response to a specific brief to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Other persons should not use a report for any purpose, or by the client for a different purpose. No individual other than the client should apply a report even apparently for its intended purpose without first conferring with the consultant. No person should apply a report for any purpose other than that originally contemplated without first conferring with the consultant.

AN ESA REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when design professionals develop their plans based on misinterpretations of an ESA. To help avoid these problems, the environmental consultant should be work with appropriate to professionals to explain relevant findings and to review the adequacy of their plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final borehole or test pit logs are developed by environmental scientists, engineers or geologists based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final logs customarily included in our reports. These logs should not under any circumstances be redrawn for inclusion in site remediation or other design drawings, because drafters may commit errors or omissions in the transfer process. photographic reproduction eliminates this problem, it does nothing to minimise the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To the likelihood of boring reduce misinterpretation, the complete report must be available to persons or organisations involved in the project, such as contractors, for their use. Those who o not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing all the available information to persons and organisations such as contractors helps prevent costly construction problems and the adversarial attitudes that may aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because an ESA is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in transmittals. These are not exculpatory clauses designed to foist liabilities onto some other party. Rather, they are definitive clauses that identify where your consultant's responsibilities begin and end. Their use helps all parties involved recognise their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your ESA report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.